Establishment of a human small-cell lung-cancer subline resistant to okadaic acid

Int J Cancer. 1994 Sep 15;58(6):882-90. doi: 10.1002/ijc.2910580623.

Abstract

Okadaic acid (OA), a specific protein phosphatase inhibitor, has various biological functions. To elucidate the mechanism of OA resistance, we have established a small-cell lung-cancer subline (H69/OA100) resistant to the growth-inhibitory effect of OA; this was done by using the parental cell line (H69) and increasing the concentration of OA. H69/OA100 was about 8 times more resistant to OA than H69. Intracellular retention of the fluorescent OA derivative in H69/OA100 was the same as that in H69. The catalytic activity of protein phosphatase from H69/OA100 was significantly reduced compared with that from H69. The protein phosphatase from H69/OA100 was 3.6 times more resistant to OA than that from H69. We examined the effect of OA on the activity of the immunoprecipitated protein phosphatase type I (PPI) and type 2A (PP2A) from the 2 cell lines. The PPI and PP2A from H69/OA100 showed more resistance to OA than those from H69. We next examined the effect of OA on the cell cycle of H69 and H69/OA100. In H69, G2/M block was observed at an OA concentration of 30 ng/ml whereas in H69/OA100, no G2/M block was observed at concentrations up to 100 ng/ml OA. We finally evaluated the amount of p34cdc2 kinase expression and the phosphorylation status of p34cdc2. There was no difference in p34cdc2 expression between H69 and H69/OA100 at several concentrations of OA. However, dephosphorylation of p34cdc2 was observed at 30 ng/ml OA in H69, but not in H69/OA100 up to 100 ng/ml OA. These data suggest that the resistance to OA and the resistance of the cell-cycle block to OA in H69/OA100 might be due to alteration of protein phosphatase activity.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Base Sequence
  • Blotting, Western
  • Carcinoma, Small Cell / drug therapy*
  • Carcinoma, Small Cell / pathology*
  • Catalysis
  • Cell Division / drug effects
  • Drug Resistance
  • Ethers, Cyclic / pharmacokinetics
  • Ethers, Cyclic / pharmacology*
  • Flow Cytometry
  • Gene Expression
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Macromolecular Substances
  • Molecular Sequence Data
  • Okadaic Acid
  • Phosphoprotein Phosphatases / antagonists & inhibitors
  • Phosphoprotein Phosphatases / genetics
  • Phosphoprotein Phosphatases / metabolism
  • Polymerase Chain Reaction
  • Tumor Cells, Cultured / drug effects*

Substances

  • Ethers, Cyclic
  • Macromolecular Substances
  • Okadaic Acid
  • Phosphoprotein Phosphatases