Genetic alterations in Japanese extrahepatic biliary tract cancer

Oncol Lett. 2017 Jul;14(1):877-884. doi: 10.3892/ol.2017.6224. Epub 2017 May 22.

Abstract

Biliary tract cancer (BTC) is one of the most devastating types of malignant neoplasms worldwide. However, the mechanisms underlying the development and progression of BTC remain unresolved. BTC includes extrahepatic bile duct carcinoma (EBDC), gallbladder carcinoma (GBC) and ampulla of Vater carcinoma (AVC), named according to the location of the tumor. Although genetic alterations of intrahepatic cholangiocarcinoma have been investigated, those of EBDC, GBC and AVC have not yet been fully understood. The present study analyzed somatic mutations of 50 cancer-associated genes in 27 Japanese BTC cells, including: 11 EBDC, 14 GBC and 2 AVC. Next-generation sequencing using an Ion AmpliSeq Cancer Panel identified a total of 44 somatic mutations across 14 cancer-associated genes. Among the 44 mutations, 42 were judged as pathological mutations. Frequent mutations were identified in tumor protein 53 (TP53) (14/27), SMAD family member 4 (SMAD4) (6/27), phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit α (PIK3CA) (6/27), and Kirsten rat sarcoma (KRAS) (6/27); no significant differences were identified between EBDC and GBC tissues. Notably, the frequency of the PIK3CA mutation was higher when compared with previous reports. This result may suggest that the activation of the PIK3CA-protein kinase B signaling pathway, in addition to the abrogation of p53, SMAD4 and RAS mitogen-activated protein kinase may have a crucial role in the carcinogenesis of Japanese BTC. These findings may be useful for the development of personalized therapies for BTC.

Keywords: ampulla of Vater carcinoma; biliary tract cancer; extrahepatic bile duct carcinoma; gallbladder carcinoma; next generation sequencing; somatic mutation.