Radioresistance in a human laryngeal squamous cell carcinoma cell line is associated with DNA methylation changes and topoisomerase II α

Cancer Biol Ther. 2015;16(4):558-66. doi: 10.1080/15384047.2015.1017154. Epub 2015 Feb 26.

Abstract

Accumulating evidence suggests that changes in methylation patterns may help mediate the sensitivity or resistance of cancer cells to ionizing radiation. The present study provides evidence for the involvement of radioresistance-induced DNA methylation changes in tumor radioresistance. We established radioresistant laryngeal cancer cells via long-term fractionated irradiation, and examined differences in DNA methylation between control and radioresistant laryngeal cancer cells. Interestingly, we found that the promoter-CpG islands of 5 previously identified radioresistance-related genes (TOPO2A, PLXDC2, ETNK2, GFI1, and IL12B) were significantly altered in the radioresistant laryngeal cancer cells. Furthermore, the demethylation of these gene promoters with a DNA methyltransferase inhibitor (5-aza-2'-deoxycytidine) increased their transcription levels. Treatment with 5-aza-2'-deoxycytidine also sensitized the radioresistant laryngeal cancer cells to irradiation, indicating that changes in DNA methylation contributed to their radioresistance. Of the tested genes, the expression and activity levels of TOPO2A were tightly associated with the radioresistant phenotype in our system, suggesting that the hypermethylation of TOPO2A might be involved in this radioresistance. Collectively, our data suggest that radiation-induced epigenetic changes can modulate the radioresistance of laryngeal cancer cells, and thus may prove useful as prognostic indicators for radiotherapy.

Keywords: 5-Aza, 5-aza-2′-deoxycytidine; BSA, Bovine Serum Albumin; DNMT, DNA methyltransferases; HRP, Horseradish peroxidase; Hep-2, Human laryngeal squamous cell carcinoma; Human laryngeal squamous cell carcinoma; Methylation; PI, Propidium iodide; Pyrosequencing; RR-Hep-2, Radioresistant Hep-2; RT-PCR, Reverse Transcription-polymerase Chain Reaction; Radioresistance; TOPO2A; TOPO2A, Topoisomerase II α.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antigens, Neoplasm / genetics*
  • Azacitidine / analogs & derivatives
  • Azacitidine / pharmacology
  • Carcinoma, Squamous Cell / drug therapy
  • Carcinoma, Squamous Cell / genetics*
  • Cell Line, Tumor
  • CpG Islands / drug effects
  • CpG Islands / genetics
  • DNA Methylation / drug effects
  • DNA Methylation / genetics*
  • DNA Topoisomerases, Type II / genetics*
  • DNA-Binding Proteins / genetics*
  • Decitabine
  • Epigenesis, Genetic / drug effects
  • Epigenesis, Genetic / genetics
  • Head and Neck Neoplasms / drug therapy
  • Head and Neck Neoplasms / genetics*
  • Humans
  • Laryngeal Neoplasms / drug therapy
  • Laryngeal Neoplasms / genetics*
  • Promoter Regions, Genetic / drug effects
  • Promoter Regions, Genetic / genetics
  • Radiation Tolerance / drug effects
  • Radiation Tolerance / genetics*
  • Squamous Cell Carcinoma of Head and Neck
  • Transcription, Genetic / drug effects
  • Transcription, Genetic / genetics

Substances

  • Antigens, Neoplasm
  • DNA-Binding Proteins
  • Decitabine
  • DNA Topoisomerases, Type II
  • Azacitidine