Metabolic interaction between cancer cells and stromal cells according to breast cancer molecular subtype

Breast Cancer Res. 2013;15(5):R78. doi: 10.1186/bcr3472.

Abstract

Introduction: The aim of this study was to investigate the differential expression of markers related to metabolic, mitochondrial and autophagy status in different molecular subtypes of breast cancer.

Methods: Using tissue microarray sections generated from 740 cases of breast cancer, we performed immunohistochemical staining for Glut-1, CAIX, MCT4, ATP synthase, glutaminase, BNIP3, Beclin-1, LC3A, LC3B and p62. Based on the immunohistochemical expression of estrogen receptor (ER), progesterone (PR), HER2, and Ki-67 labeling index, the cases were classified into luminal A, luminal B, HER2 and triple-negative breast cancer (TNBC). We further classified metabolic phenotypes of tumors according to glycolytic status by assessing Glut-1 and CAIX expression as follows: Warburg type: tumor (glycolysis type), stroma (nonglycolysis type); reverse Warburg type: tumor (nonglycolysis type), stroma (glycolysis type); mixed type: tumor (glycolysis type), stroma (glycolysis type); and null type: tumor (nonglycolysis type), stroma (nonglycolysis type).

Results: Expression of Glut-1, MCT4 and LC3A was highest in TNBC and lowest in luminal A type (P < 0.001). Tumors were classified into 298 Warburg type (40.3%), 54 reverse Warburg type (7.3%), 62 mixed type (8.4%) and 326 null type (44.0%). The mixed type had a higher histologic grade, ER negativity, PR negativity and Ki-67 index, whereas the null type showed lower histologic grade, ER positivity, PR positivity and Ki-67 index (P < 0.001). TNBC constituted the major portion of Warburg and mixed types, and luminal A consisted mainly of reverse Warburg and null types (P < 0.001).

Conclusion: Breast cancer is heterogeneous in its metabolic status, and therefore it can be classified into various metabolic phenotypes. Specifically, the Warburg and mixed types had strong associations with TNBC, whereas reverse the Warburg and null types had associations with the luminal type, suggesting a correlation between metabolic phenotype and the biology of breast cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Biomarkers, Tumor / metabolism
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism*
  • Breast Neoplasms / mortality
  • Breast Neoplasms / pathology
  • Female
  • Humans
  • Middle Aged
  • Neoplasm Grading
  • Neoplasm Metastasis
  • Neoplasm Staging
  • Phenotype
  • Proteome
  • Stromal Cells / metabolism*
  • Stromal Cells / pathology

Substances

  • Biomarkers, Tumor
  • Proteome