Curcumin induces cross-regulation between autophagy and apoptosis in uterine leiomyosarcoma cells

Int J Gynecol Cancer. 2013 Jun;23(5):803-8. doi: 10.1097/IGC.0b013e31828c9581.

Abstract

Objective: Uterine leiomyosarcoma (LMS) has an unfavorable response to standard chemotherapy. A natural occurring compound, curcumin, has been shown to have inhibitory effects on cancers. We previously demonstrated that curcumin reduced uterine LMS cell proliferation by targeting the AKT-mTOR pathway and activating apoptosis. To further explore the anticancer effect of curcumin, we investigated the efficacy of curcumin on autophagy in LMS cells.

Methods: Cell proliferation in human uterine LMS cell lines, SKN and SK-UT-1, was assessed after exposure to rapamycin or curcumin. Autophagy was detected by Western blotting for light chain 3 and sequestosome 1 (SQSTM1/p62) expression. Apoptosis was confirmed by Western blotting for cleaved poly (ADP-ribose) polymerase (PARP).

Results: Both rapamycin and curcumin potently inhibited SKN and SK-UT-1 cell proliferation in a dose-dependent manner. Curcumin induced autophagy and apoptosis in SKN and SK-UT-1 cells, whereas rapamycin, a specific mTOR inhibitor, did not. Curcumin increased extracellular signal-regulated kinase 1/2 activity in both SKN and SK-UT-1 cells, whereas PD98059, an MEK1 inhibitor, inhibited both the extracellular signal-regulated kinase 1/2 pathway and curcumin-induced autophagy.

Conclusions: These experimental findings suggest that curcumin is a potent inhibitor of cell proliferation in uterine LMS and provide new insights about ongoing signaling events leading to the possible development of a new therapeutic agent.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents / pharmacology*
  • Apoptosis / drug effects*
  • Autophagy / drug effects*
  • Blotting, Western
  • Cell Proliferation / drug effects
  • Curcumin / pharmacology*
  • Enzyme Inhibitors / pharmacology
  • Extracellular Signal-Regulated MAP Kinases / antagonists & inhibitors
  • Extracellular Signal-Regulated MAP Kinases / metabolism
  • Female
  • Humans
  • Leiomyosarcoma / drug therapy
  • Leiomyosarcoma / metabolism
  • Leiomyosarcoma / pathology*
  • Phosphorylation / drug effects
  • Proto-Oncogene Proteins c-akt / antagonists & inhibitors
  • Proto-Oncogene Proteins c-akt / metabolism
  • Signal Transduction / drug effects
  • TOR Serine-Threonine Kinases / antagonists & inhibitors
  • TOR Serine-Threonine Kinases / metabolism
  • Tumor Cells, Cultured
  • Uterine Neoplasms / drug therapy
  • Uterine Neoplasms / metabolism
  • Uterine Neoplasms / pathology*

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • MTOR protein, human
  • Proto-Oncogene Proteins c-akt
  • TOR Serine-Threonine Kinases
  • Extracellular Signal-Regulated MAP Kinases
  • Curcumin