Electron and spin-density analysis of tirapazamine reduction chemistry

Chem Res Toxicol. 2012 Mar 19;25(3):620-33. doi: 10.1021/tx2005458. Epub 2012 Mar 5.

Abstract

Tirapazamine (TPZ, 1, 3-amino-1,2,4-benzotriazine 1,4-N,N-dioxide), the radical anion 2 formed by one-electron reduction of 1, and neutral radicals 3 and 4 formed by protonation of 2 at O(N4) or O(N1), respectively, and their N-OH homolyses 3 → 5 + ·OH and 4 → 6 + ·OH have been studied with configuration interaction theory, perturbation theory, and density functional theory. A comprehensive comparative analysis is presented of structures and electronic structures and with focus on the development of an understanding of the spin-density distributions of the radical species. The skeletons of radicals 3 and 4 are distinctly nonplanar, several stereoisomeric structures are discussed, and there exists an intrinsic preference for 3 over 4. The N-oxides 1, 5, and 6 have closed-shell singlet ground states and low-lying, singlet biradical (SP-1, SP-6) or biradicaloid (SP-5) excited states. The doublet radicals 2, 3, and 4 are heavily spin-polarized. Most of the spin density of the doublet radicals 2, 3, and 4 is located in one (N,O)-region, and in particular, 3 and 4 are not C3-centered radicals. Significant amounts of spin density occur in both rings in the singlet biradical(oid) excited states of 1, 5, and 6. The dipole moment of the N2-C3(X) bond is large, and the nature of X provides a powerful handle to modulate the N2-C3 bond polarity with opposite effects on the two NO regions. Our studies show very low proton affinities of radical anion 2 and suggest that the pK(a) of radical [2+H] might be lower than 6. Implications are discussed regarding the formation of hydroxyl from 3 and/or 4, regarding the ability of 5 and 6 to react with carbon-centered radicals in a manner that ultimately leads to oxygen transfer, and regarding the interpretation of the EPR spectra of reduced TPZ species and of their spin-trap adducts.

MeSH terms

  • Antineoplastic Agents / chemistry*
  • Electrons
  • Models, Chemical
  • Oxidation-Reduction
  • Spin Trapping
  • Tirapazamine
  • Triazines / chemistry*

Substances

  • Antineoplastic Agents
  • Triazines
  • Tirapazamine