20-Hydroxyvitamin D2 is a noncalcemic analog of vitamin D with potent antiproliferative and prodifferentiation activities in normal and malignant cells

Am J Physiol Cell Physiol. 2011 Mar;300(3):C526-41. doi: 10.1152/ajpcell.00203.2010. Epub 2010 Dec 15.

Abstract

20-hydroxyvitamin D(2) [20(OH)D(2)] inhibits DNA synthesis in epidermal keratinocytes, melanocytes, and melanoma cells in a dose- and time-dependent manner. This inhibition is dependent on cell type, with keratinocytes and melanoma cells being more sensitive than normal melanocytes. The antiproliferative activity of 20(OH)D(2) is similar to that of 1,25(OH)(2)D(3) and of newly synthesized 1,20(OH)(2)D(2) but significantly higher than that of 25(OH)D(3). 20(OH)D(2) also displays tumorostatic effects. In keratinocytes 20(OH)D(2) inhibits expression of cyclins and stimulates involucrin expression. It also stimulates CYP24 expression, however, to a significantly lower degree than that by 1,25(OH)(2)D(3) or 25(OH)D(3). 20(OH)D(2) is a poor substrate for CYP27B1 with overall catalytic efficiency being 24- and 41-fold lower than for 25(OH)D(3) with the mouse and human enzymes, respectively. No conversion of 20(OH)D(2) to 1,20(OH)(2)D(2) was detected in intact HaCaT keratinocytes. 20(OH)D(2) also demonstrates anti-leukemic activity but with lower potency than 1,25(OH)(2)D(3). The phenotypic effects of 20(OH)D(2) are mediated through interaction with the vitamin D receptor (VDR) as documented by attenuation of cell proliferation after silencing of VDR, by enhancement of the inhibitory effect through stable overexpression of VDR and by the demonstration that 20(OH)D(2) induces time-dependent translocation of VDR from the cytoplasm to the nucleus at a comparable rate to that for 1,25(OH)(2)D(3). In vivo tests show that while 1,25(OH)(2)D(3) at doses as low as 0.8 μg/kg induces calcium deposits in the kidney and heart, 20(OH)D(2) is devoid of such activity even at doses as high as 4 μg/kg. Silencing of CY27B1 in human keratinocytes showed that 20(OH)D(2) does not require its transformation to 1,20(OH)(2)D(2) for its biological activity. Thus 20(OH)D(2) shows cell-type dependent antiproliferative and prodifferentiation activities through activation of VDR, while having no detectable toxic calcemic activity, and is a poor substrate for CYP27B1.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • 25-Hydroxyvitamin D 2 / analogs & derivatives*
  • 25-Hydroxyvitamin D 2 / pharmacology
  • Animals
  • Antineoplastic Agents / pharmacology*
  • Cell Differentiation / drug effects
  • Cell Differentiation / physiology
  • Cell Proliferation / drug effects*
  • Cells, Cultured
  • Growth Inhibitors / pharmacology*
  • HL-60 Cells
  • Humans
  • Keratinocytes / cytology
  • Keratinocytes / metabolism*
  • Keratinocytes / pathology
  • Melanocytes / cytology
  • Melanocytes / metabolism*
  • Melanocytes / pathology
  • Mice
  • Neoplasms / drug therapy
  • Neoplasms / pathology*

Substances

  • 20-hydroxyvitamin D2
  • Antineoplastic Agents
  • Growth Inhibitors
  • 25-Hydroxyvitamin D 2