TRAIL as a target in anti-cancer therapy

Cancer Lett. 2009 Nov 18;285(1):1-5. doi: 10.1016/j.canlet.2009.02.029. Epub 2009 Mar 18.

Abstract

The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the TNF superfamily that can initiate apoptosis through the activation of their death receptors. The ability of TRAIL to selectively induce apoptosis of transformed or tumor cells but not normal cells promotes the development of TRAIL-based cancer therapy. Accumulating preclinical studies demonstrate that the TRAIL ligand can effectively induce cancer cell apoptosis. Completed and ongoing Phases I and II clinical trials using TRAIL are showing clinically promising outcomes without significant toxicity. Importantly, TRAIL, DR4 and DR5 can all be induced by chemotherapeutics and/or radiation, which can sensitize cancer cells to TRAIL. Thus, understanding the regulation of the TRAIL apoptosis pathway can help develop more selective TRAIL-based agents for the treatment of human cancer.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use*
  • Apoptosis / drug effects*
  • Cell Survival
  • Drug Resistance, Neoplasm
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Mutation
  • Neoplasms / drug therapy*
  • Neoplasms / genetics
  • Neoplasms / metabolism
  • Neoplasms / pathology
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / drug effects*
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / genetics
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / metabolism
  • Recombinant Proteins / therapeutic use
  • TNF-Related Apoptosis-Inducing Ligand / genetics
  • TNF-Related Apoptosis-Inducing Ligand / metabolism
  • TNF-Related Apoptosis-Inducing Ligand / therapeutic use*
  • Treatment Outcome
  • Up-Regulation

Substances

  • Antineoplastic Agents
  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • Recombinant Proteins
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFSF10 protein, human