Synthesis, metal ion binding, and biological evaluation of new anticancer 2-(2'-hydroxyphenyl)benzoxazole analogs of UK-1

Bioorg Med Chem. 2008 Feb 15;16(4):1775-83. doi: 10.1016/j.bmc.2007.11.019. Epub 2007 Nov 12.

Abstract

UK-1 is a bis(benzoxazole) natural product displaying activity against a wide range of human cancer cell lines. A simplified analog of UK-1, 4-carbomethoxy-2-(2'-hydroxyphenyl)benzoxazole, was previously found to be almost as active as UK-1 against cancer cell lines, and similar to the natural product, formed complexes with a variety of metal ions such as Mg2+ and Zn2+. A series of 4-substituted-2-(2'-hydroxyphenyl)benzoxazole analogs of this 'minimal pharmacophore' of UK-1 were prepared. The anti-cancer activity of these analogs was examined in breast and lung cancer cell lines. Spectrophotometric titrations in methanol were carried out in order to assess the ability of UK-1 and these analogs to coordinate with Mg2+ and Cu2+ ions. Although none of the new analogs were more cytotoxic than 4-carbomethoxy-2-(2'-hydroxyphenyl)benzoxazole, some analogs were identified that display similar cytotoxicity to this simplified UK-1 analog with improved water solubility. UK-1 and all of these new analogs bind Cu2+ ions better than Mg2+ ions, and the nature of the 4-substituent is important for the Mg2+ ion binding ability of these 2-(2'-hydroxyphenyl)benzoxazoles. Previous studies of a limited number of UK-1 analogs demonstrated a correlation between Mg2+ ion binding ability and cytotoxicity; however, within this series of 4-substituted-2-(2'-hydroxyphenyl)benzoxazoles the variations in cytotoxicity do not correlate with either Mg2+ or Cu2+ ion binding ability. These results, together with recent ESI-MS studies of Cu2+-mediated DNA binding by UK-1 and analogs, indicate that UK-1 and analogs may exert their cytotoxic effects by interaction with Cu2+ or other transition metal ions, rather than Mg2+, and that metal ion-mediated DNA binding, rather than metal ion binding affinity, is important for the cytotoxic effect of these compounds. The potential role of Cu2+ ions in the cytotoxic action of UK-1 is further supported by the observation that UK-1 in the presence of Cu2+ displays enhanced cytotoxicity to MCF-7 and A549 cells when compared to UK-1 alone.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antineoplastic Agents / chemistry*
  • Antineoplastic Agents / pharmacology
  • Benzoxazoles / chemistry
  • Benzoxazoles / pharmacology*
  • Biological Products
  • Breast Neoplasms / drug therapy
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Survival / drug effects
  • Copper
  • Female
  • Humans
  • Lung Neoplasms / drug therapy
  • Lung Neoplasms / pathology
  • Magnesium
  • Metals*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Benzoxazoles
  • Biological Products
  • Metals
  • UK 1
  • Copper
  • Magnesium