Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin

Med Res Rev. 2008 Jan;28(1):155-83. doi: 10.1002/med.20097.

Abstract

In this review, an attempt has been made to throw light on the mechanism of action of colchicine and its different analogs as anti-cancer agents. Colchicine interacts with tubulin and perturbs the assembly dynamics of microtubules. Though its use has been limited because of its toxicity, colchicine can still be used as a lead compound for the generation of potent anti-cancer drugs. Colchicine binds to tubulin in a poorly reversible manner with high activation energy. The binding interaction is favored entropically. In contrast, binding of its simple analogs AC or DAAC is enthalpically favored and commences with comparatively low activation energy. Colchicine-tubulin interaction, which is normally pH dependent, has been found to be independent of pH in the presence of microtubule-associated proteins, salts or upon cleavage of carboxy termini of tubulin. Biphasic kinetics of colchicines-tubulin interaction has been explained in light of the variation in the residues around the drug-binding site on beta-tubulin. Using the crystal structure of the tubulin-DAMAcolchicine complex, a detailed discussion on the pharmacophore concept that explains the variation of affinity for different colchicine site inhibitors (CSI) has been discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology
  • Colchicine / analogs & derivatives
  • Colchicine / chemistry*
  • Colchicine / metabolism
  • Colchicine / pharmacology*
  • Humans
  • Kinetics
  • Mitosis / drug effects*
  • Protein Binding
  • Structure-Activity Relationship
  • Thermodynamics
  • Tubulin / chemistry
  • Tubulin / metabolism*
  • Tubulin Modulators / chemistry
  • Tubulin Modulators / pharmacology*

Substances

  • Antineoplastic Agents
  • Tubulin
  • Tubulin Modulators
  • Colchicine