Inhibition of prostate cancer growth by vitamin D: Regulation of target gene expression

J Cell Biochem. 2003 Feb 1;88(2):363-71. doi: 10.1002/jcb.10334.

Abstract

Prostate cancer (PCa) cells express vitamin D receptors (VDR) and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) inhibits the growth of epithelial cells derived from normal, benign prostate hyperplasia, and PCa as well as established PCa cell lines. The growth inhibitory effects of 1,25(OH)(2)D(3) in cell cultures are modulated tissue by the presence and activities of the enzymes 25-hydroxyvitamin D(3) 24-hydroxylase which initiates the inactivation of 1,25(OH)(2)D(3) and 25-hydroxyvitamin D(3) 1alpha-hydroxylase which catalyses its synthesis. In LNCaP human PCa cells 1,25(OH)(2)D(3) exerts antiproliferative activity predominantly by cell cycle arrest through the induction of IGF binding protein-3 (IGFBP-3) expression which in turn increases the levels of the cell cycle inhibitor p21 leading to growth arrest. cDNA microarray analyses of primary prostatic epithelial and PCa cells reveal that 1,25(OH)(2)D(3) regulates many target genes expanding the possible mechanisms of its anticancer activity and raising new potential therapeutic targets. Some of these target genes are involved in growth regulation, protection from oxidative stress, and cell-cell and cell-matrix interactions. A small clinical trial has shown that 1,25(OH)(2)D(3) can slow the rate of prostate specific antigen (PSA) rise in PCa patients demonstrating proof of concept that 1,25(OH)(2)D(3) exhibits therapeutic activity in men with PCa. Further investigation of the role of calcitriol and its analogs for the therapy or chemoprevention of PCa is currently being pursued.

Publication types

  • Review

MeSH terms

  • 25-Hydroxyvitamin D3 1-alpha-Hydroxylase / metabolism
  • Androgens / metabolism
  • Animals
  • Calcitriol / analogs & derivatives
  • Calcitriol / pharmacology*
  • Cell Division / drug effects
  • Clinical Trials as Topic
  • Cytochrome P-450 Enzyme System / metabolism
  • Gene Expression Regulation*
  • Humans
  • Male
  • Prostatic Neoplasms / drug therapy*
  • Prostatic Neoplasms / genetics*
  • Steroid Hydroxylases / metabolism
  • Vitamin D / metabolism
  • Vitamin D / pharmacology
  • Vitamin D3 24-Hydroxylase

Substances

  • Androgens
  • Vitamin D
  • Cytochrome P-450 Enzyme System
  • Steroid Hydroxylases
  • Vitamin D3 24-Hydroxylase
  • 25-Hydroxyvitamin D3 1-alpha-Hydroxylase
  • Calcitriol