Optimization of the dose level for a given treatment plan to maximize the complication-free tumor cure

Acta Oncol. 1999;38(6):787-98. doi: 10.1080/028418699432950.

Abstract

During the past decade, tumor and normal tissue reactions after radiotherapy have been increasingly quantified in radiobiological terms. For this purpose, response models describing the dependence of tumor and normal tissue reactions on the irradiated volume, heterogeneity of the delivered dose distribution and cell sensitivity variations can be taken into account. The probability of achieving a good treatment outcome can be increased by using an objective function such as P+, the probability of complication-free tumor control. A new procedure is presented, which quantifies P+ from the dose delivery on 2D surfaces and 3D volumes and helps the user of any treatment planning system (TPS) to select the best beam orientations, the best beam modalities and the most suitable beam energies. The final step of selecting the prescribed dose level is made by a renormalization of the entire dose plan until the value of P+ is maximized. The index P+ makes use of clinically established dose-response parameters, for tumors and normal tissues of interest, in order to improve its clinical relevance. The results, using P+, are compared against the assessments of experienced medical physicists and radiation oncologists for two clinical cases. It is observed that when the absorbed dose level for a given treatment plan is increased, the treatment outcome first improves rapidly. As the dose approaches the tolerance of normal tissues the complication-free cure begins to drop. The optimal dose level is often just below this point and it depends on the geometry of each patient and target volume. Furthermore, a more conformal dose delivery to the target results in a higher control rate for the same complication level. This effect can be quantified by the increased value of the P+ parameter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Dose-Response Relationship, Radiation
  • Humans
  • Neoplasms / radiotherapy*
  • Probability
  • Radiotherapy / adverse effects
  • Treatment Outcome