Skip to main content
Log in

Emerging New Agents for the Management of Patients with Non-Small Cell Lung Cancer

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Lung cancer is one of the leading causes of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for at least 87% of all lung cancers and most cases present at an advanced stage, with metastatic, locally advanced or recurrent disease. With a greater understanding of tumour biology, a number of targeted agents have been investigated for the treatment of advanced NSCLC. These include insulin-like growth factor inhibitors, c-MET inhibitors, poly(adenosine diphosphate-ribose) polymerase inhibitors, histone deacetylase inhibitors, proapoptotic agents, epidermal growth factor receptor inhibitors, vaccines, immunotherapy and hedgehog inhibitors. This article aims to provide an overview of some of the emerging molecules for NSCLC that have demonstrated interesting results in the past couple of years, including descriptions of the molecular pathways of these drugs and their main location of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dempke WC, Suto T, Reck M. Targeted therapies for non-small cell lung cancer. Lung Cancer 2010; 67(3): 257–74

    Article  PubMed  Google Scholar 

  2. Altekruse S, Kosary C, Krapcho M, et al. National Cancer Institute, Bethesda, MD. SEER Cancer Statistics Review, 1975–2007 [online] Based on November 2009 SEER data submission. Posted on the SEER Website 2010. Available from URL: http://seer.cancer.gov/csr/1975_2007 [Accessed 2012 Feb 21]

    Google Scholar 

  3. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology™. Non-Small Cell Lung Cancer V. 2. Pennsylvania: NCCN, 2009

    Google Scholar 

  4. Maki RG. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol 2010; 28(33): 4985–95

    Article  PubMed  CAS  Google Scholar 

  5. Neal JW, Sequist LV. Exciting new targets in lung cancer therapy: ALK, IGF-1R, HD AC, and Hh. Curr Treat Options in Oncol 2010; 11(1–2): 36–44

    Article  Google Scholar 

  6. Pollak M. Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 2008; 8(12): 915–28

    Article  PubMed  CAS  Google Scholar 

  7. Karp DD, Paz-Ares LG, Novello S, et al. Phase II study of the anti-insulin-like growth factor type 1 receptor antibody CP-751, 871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic non-small-cell lung cancer. J Clin Oncol 2009; 27(15): 2515–22

    Article  Google Scholar 

  8. Jassem J, Langer CJ, Karp DD, et al. Randomized, open label, phase III trial of figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin in patients with non-small cell lung cancer (NSCLC). In: 2010 American Society of Clinical Oncology (ASCO) Annual Meeting; 2010 Jun 4–8; Chicago, IL, USA. J Clin Oncol 2010; 28 (15S Suppl.): 7500

    Google Scholar 

  9. Gualberto A, Hixon ML, Karp DD, et al. Pre-treatment levels of circulating free IGF-1 identify NSCLC patients who derive clinical benefit from figitumumab. Br J Cancer 2011; 104(1): 68–74

    Article  PubMed  CAS  Google Scholar 

  10. Hana JY, Choib BG, Choia JY, et al. The prognostic significance of pretreatment plasma levels of insulin-like growth factor (IGF)-1, IGF-2, and IGF binding protein-3 in patients with advanced non-small cell lung cancer. Lung Cancer 2006; 54(2): 227–34

    Article  Google Scholar 

  11. Pfizer, Inc. Pfizer Discontinues A Phase 3 Study Of Figitumumab In Previously Treated Patients With Advanced Non-Small Cell Lung Cancer [media release]. 2010 March 11 [online]. Available from URL: http://media.pfizer.com/files/news/press_releases/2010/figitumumab_031110.pdf

  12. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 2007; 316(5827): 1039–43

    Article  PubMed  CAS  Google Scholar 

  13. Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 2007; 104(52): 20932–7

    Article  PubMed  CAS  Google Scholar 

  14. National Cancer Institute at the National Institutes of Health. Clinical Trials [online]. Available from URL: http:www.cancer.gov/clinicaltrials [Accessed 2012 Feb 21]

  15. Varella-Garcia M, Cho Y, Lu X, et al. ALK gene rearrangements in unselected caucasians with non-small cell lung carcinoma (NSCLC). In: 2010 American Society of Clinical Oncology (ASCO) Annual Meeting; 2010 Jun 4–8; Chicago, IL, USA. J Clin Oncol 2010; 28 (15S Suppl.): 10533

    Google Scholar 

  16. Choi YL, Takeuchi K, Soda M, et al. Identification of novel isoforms of the EML4-ALK transforming gene in non-small cell lung cancer. Cancer Res 2008; 68(13): 4971–6

    Article  PubMed  CAS  Google Scholar 

  17. Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell 2010; 18(6): 548–51

    Article  PubMed  CAS  Google Scholar 

  18. Kwak EL, Bang YJ, Camidge DR, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010; 363(18): 1693–703. Erratum in: N Engl J Med 2011; 364(6): 588

    Article  PubMed  CAS  Google Scholar 

  19. Kanome T, Kadofuku T, Yamaoka T, et al. The novel c-met inhibitor, ARQ-197, shows additive growth-inhibitory effect with erlotinib through enhanced degradation of c-Met protein via ubiquitin/proteasome pathway [abstract no. 1639]. 2010 American Association for Cancer Research Annual Meeting; 2010 Apr 17–21; Washington, DC, USA

  20. Sequist LV, von Pawel J, Garmey EG, et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 2011; 28(24): 3307–15

    Article  Google Scholar 

  21. Sandler A, Shiller JH, Hirsh V, et al. A phase III, randomized, double-blind, placebo-controlled study of erlotinib plus ARQ 197 versus erlotinib plus placebo in previously treated subjects with locally advanced or metastatic, nonsquamous, non-small cell lung cancer (NSCLC). In: 2011 American Society of Clinical Oncology (ASCO) Annual Meeting; 2011 Jun 3–7; Chicago, IL, USA. J Clin Oncol 2011; 29 (Suppl.): TPS217

    Google Scholar 

  22. Burgess T, Coxon A, Meyer S, et al. Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Res 2006; 66(3): 1721–9

    Article  PubMed  CAS  Google Scholar 

  23. Jun HT, Sun J, Rex K, et al. AMG 102, a fully human anti-hepatocyte growth factor/scatter factor neutralizing antibody, enhances the efficacy of temozolomide or docetaxel in U-87 mg cells and xenografts. Clin Cancer Res 2007; 13 (22 Pt 1): 6735–42

    Article  PubMed  CAS  Google Scholar 

  24. Amgen. A Phase 1b/2 trial of AMG 479 or AMG 102 with Platinum-Based Chemotherapy as First-Line Treatment for Extensive Stage Small-Cell Lung Cancer (SCLC) [ClinicalTrials.gov identifier NCT00791154] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov/ct2/show/NCT00791154?term=AMG102&rank=1 [Accessed 2012 Feb 21]

  25. Merchant M, Zhang YW, Su Y, et al. MetMAb significantly enhances anti-tumor activity of anti-VEGF and/or erlotinib in several animal tumor models [abstract no. 556]. 20th Annual AARC-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics; 2008 Oct 21–24; Geneva, Switzerland

  26. Merchant M, Zhang Y, Su Y, et al. Combination efficacy with MetMAb and erlotinib in a NSCLC tumor model highlight therapeutic opportunities for c-Met inhibitors in combination with EGFR inhibitors [abstract no. 1336]. 2008 American Association for Cancer Research Annual Meeting; 2008 Apr 12–16; San Diego, CA, USA

  27. Spigel D, Ervin R, Ramlau D, et al. MetMAb combined with Tarceva in NSCLC [abstract no. LBA15]. 35th European Society for Medical Oncology (ESMO); 2010 Oct 8–12; Milan, Italy

  28. Powell C, Mikropoulos C, Kaye SB, et al. Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev 2010; 36(7): 566–75

    Article  PubMed  CAS  Google Scholar 

  29. Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434(7035): 917–21

    Article  PubMed  CAS  Google Scholar 

  30. Di Maio M, Morabito A, Piccirillo MC, et al. New drugs in advanced non-small-cell lung cancer: searching for the correct clinical development. Drugs 2010; 19(12): 1503–14

    Google Scholar 

  31. O’Shaughnessy J, Osborne C, Pippen J, et al. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): Results of a randomized phase II trial. In: 2009 American Society of Clinical Oncology (ASCO) Annual Meeting; 2009 May 29–Jun 2; Chicago, IL, USA. J Clin Oncol 2009; 27 (18S Suppl.): 3

    Google Scholar 

  32. Sanofi-Aventis. Randomized Phase 3 Trial of Gemcitabine/Carboplatin With or Without Iniparib (SAR240550) (a PARP1 Inhibitor) in Subjects With Previously Untreated Stage IV Squamous Non-Small-Cell Lung Cancer (NSCLC). [ClinicalTrials.gov identifier NCT01082549] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: [Accessed 2012 Feb 21]

  33. Besse B, Felip E, Barlesi F, et al. Results of a randomized phase II trial of gemcitabine/cisplatin/unipari (GCI) vs gemcitabine/cisplatin (GC) in patients with stage IV NSCLC. JTO Volume 6, Number 6, June 2011. Abstract O43.04

  34. Marks P, Rifkind RA, Richon VM, et al. Histones deacetylases and cancer: causes and therapies. Nat Rev Cancer 2001; 1(3): 194–202

    Article  PubMed  CAS  Google Scholar 

  35. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 2006; 6(1): 38–51

    Article  PubMed  CAS  Google Scholar 

  36. Schrump DS. Cytotoxicity mediated by histone deacetylase inhibitors in cancer cells: mechanisms and potential clinical implications. Clin Cancer Res 2009; 15(12): 3947–57

    Article  PubMed  CAS  Google Scholar 

  37. Olsen EA, Kim YH, Kuzel TM, et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J Clin Oncol 2007; 25(21): 3109–15

    Article  PubMed  CAS  Google Scholar 

  38. Traynor AM, Dubey S, Eickhoff JC, et al. Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 2009; 4(4): 522–6

    Article  PubMed  Google Scholar 

  39. Owonikoko TK, Ramalingam SS, Kanterewicz B, et al. Vorinostat increases carboplatin and paclitaxel activity in non-small-cell lung cancer cells. Int J Cancer 2010; 126(3): 743–55

    Article  PubMed  CAS  Google Scholar 

  40. Ramalingam SS, Maitland ML, Frankel P, et al. Carboplatin and paclitaxel in combination with either vorinostat or placebo for first-line therapy of advanced non-small-cell lung cancer. J Clin Oncol 2010; 28(1): 56–62

    Article  PubMed  CAS  Google Scholar 

  41. Belani C, Ramalingam S, Kalemkerian G, et al. Randomised, double-blind phase II-III study of first line paclitaxel (P) plus carboplatin (C) in combination with vorinostat or placebo in patients with advanced non-small-cell lung cancer (NSCLC). Eur J Cancer 2009; Suppl. 7(2): 507, abst 0-9007

    Google Scholar 

  42. Witta SE, Gemmill RM, Hirsch FR, et al. Restoring E-cadherin expression increases sensitivity to epidermal growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 2006; 66(2): 944–50

    Article  PubMed  CAS  Google Scholar 

  43. Zhang W, Peyton M, Xie Y, et al. Histone deacetylase inhibitor romidepsin enhances anti-tumor effect of erlotinib in non-small cell lung cancer (NSCLC) cell lines. J Thorac Oncol 2009; 4(2): 161–6

    Article  PubMed  Google Scholar 

  44. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100(1): 57–70

    Article  PubMed  CAS  Google Scholar 

  45. Haura EB, Douglas Cess WD, Chellappan S, et al. Anti-apoptotic signaling pathways in non-small-cell lung cancer: biology and therapeutic strategies. Clin Lung Cancer 2004; 6(2): 113–22

    Article  PubMed  CAS  Google Scholar 

  46. Pukac L, Kanakaraj P, Humphreys R, et al. HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 2005; 92(8): 1430–41

    Article  PubMed  CAS  Google Scholar 

  47. Tolcher AW, Mita M, Meropol NJ, et al. Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor related apoptosis-inducing ligand receptor-1. J Clin Oncol 2007; 25(11): 1390–6

    Article  PubMed  CAS  Google Scholar 

  48. Greco FA, Bonomi P, Crowford J, et al. Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 2008; 61(1): 82–90

    Article  PubMed  Google Scholar 

  49. Von Pawal J, Harvey JH, Spigel DR, et al. A randomized phase II trial of mapatumumab, a TRAIL-R1 agonist monoclonal antibody, in combination with carboplatin and paclitaxel in patients with advanced NSCLC. In: 2010 American Society of Clinical Oncology (ASCO) Annual Meeting; 2010 Jun 4–8; Chicago, IL, USA. J Clin Oncol 2010; 28 (18S Suppl.): LBA7501

    Google Scholar 

  50. Jin H, Yang R, Ross J, et al. Cooperation of the agonistic DR5 antibody apomab with chemotherapy to inhibit orthotopic lung tumor growth and improve survival. Clin Cancer Res 2008; 14(23): 7733–40

    Article  PubMed  CAS  Google Scholar 

  51. Karapetis CS, Clingan PR, Leighl NB, et al. Phase II study of PRO95780 plus paclitaxel, carboplatin, and bevacizumab (PCB) in non-small cell lung cancer (NSCLC). In: 2010 American Society of Clinical Oncology (ASCO) Annual Meeting; 2010 Jun 4–8; Chicago, IL, USA. J Clin Oncol 2010; 28 (15S Suppl.): 7535. Plus Poster Discussion Session (Board #24)

    Google Scholar 

  52. LoRusso P, Hong D, Heath E, et al. First-in-human study of AMG 655, a pro-apoptotic TRAIL receptor-2 agonist, in adult patients with advanced solid tumors. In: 2007 American Society of Clinical Oncology (ASCO) Annual Meeting; 2007 Jun 1–5; Chicago, IL, USA. J Clin Oncol 2007; 25 (18S Suppl. Pt 1): 3534

    Article  Google Scholar 

  53. Paz-Ares L, Sánchez Torres JM, Diaz-Padilla I, et al. Safety and efficacy of AMG 655 in combination with paclitaxel and carboplatin (PC) in patients with advanced non-small cell lung cancer (NSCLC). In: 2009 American Society of Clinical Oncology (ASCO) Annual Meeting; 2009 May 29-Jun 2; Chicago, IL, USA. J Clin Oncol 2009; 27 (Suppl.): e19048

    Google Scholar 

  54. Amgen. A Phase 1b/2 Study of AMG 655 in Combination With Paclitaxel and Carboplatin for the First-Line Treatment of Advanced Non-Small Cell Lung Cancer [Clinical-Trials.gov identifier NCT00534027]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00534027?term=AMG+655+and+lung&rank=1 [Accessed 2012 Feb 21]

  55. Giaccone G, Zatloukal P, Roubec J, et al. Multicenter phase II trial of YM155, a small-molecule suppressor of survivin, in patients with advanced, refractory, non-small-cell lung cancer. J Clin Oncol 2009; 27(27): 4481–6

    Article  PubMed  CAS  Google Scholar 

  56. National Cancer Institute. A Phase I/II Study of Paclitaxel, Carboplatin and YM155 (Survivin Suppressor) in Subjects With Solid Tumors (Phase I) and Advanced Non-Small Cell Lung Carcinoma (Phase II) [ClinicalTrials.gov identifier NCT01100931]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT01100931?term=YM155+and+lung&rank=1 [Accessed 2012 Feb 21]

  57. US National Institutes of Health. ClinicalTrials.gov [online]. Available from URL: http://www.clinicaltrials.gov [Accessed 2012 Feb 21]

  58. Yang C, Shih J, Su W, et al. A phase II study of BIBW 2992 in patients with adenocarcinoma of the lung and activating EGFR mutations (LUX-Lung 2). In: 2010 American Society of Clinical Oncology (ASCO) Annual Meeting; 2010 Jun 4–8; Chicago, IL, USA. J Clin Oncol 2010; 28 (15S Suppl.): 7521

    Google Scholar 

  59. Yang CH, Shih JY, Su WC, et al. A phase II study of BIBW 2992 in patients with adenocarcinoma of the lung and activating EGFR/HER1 mutations (LUX-Lung 2) [abstract no. 367PD]. 35th European Society for Medical Oncology (ESMO); 2010 Oct 8–12; Milan, Italy

  60. Yang C, Hirsh V, Cadranel J, et al. Phase IIb/III double-blind randomized trial of BIBW 2992, an irreversible, dual inhibitor of EGFR and HER2 plus best supportive care (BSC) versus placebo plus BSC in patients with NSCLC failing 1–2 lines of chemotherapy (CT) and erlotinib or gefitinib (LUX-Lung 1): a preliminary report. In: 2009 American Society of Clinical Oncology (ASCO) Annual Meeting; 2009 May 29–Jun 2; Chicago, IL, USA. J Clin Oncol 2009; 27 (15S Suppl.): 8062

    Google Scholar 

  61. Miller VA, Hirsh V, Cadranel J, et al. Phase IIB/III double-blind randomized trial of afatinib (BIBW 2992, an irreversible inhibitor of EGFR/HER1and HER2)+best supportive care (BSC) versus placebo 1+BSC in patients with NSCLC failing 1–2 lines of chemotherapy and erlotinib or gefitinib (LUX-LUNG 1). In: 35th European Society for Medical Oncology (ESMO); 2010 Oct 8–12; Milan, Italy. Ann Oncol 2010; 21 (Suppl. 8): viii1. Abstract LBA1

    Google Scholar 

  62. Boehringer Ingelheim Pharmaceuticals. A Randomised, Open-label, Phase III Study of BIBW 2992 Versus Chemotherapy as First-line Treatment for Patients With Stage IIIB or IV Adenocarcinoma of the Lung Harbouring an EGFR Activating Mutation [ClinicalTrials.gov identifier NCT00949650]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00949650?term=BIBW+2992+and+cisplatin&rank=3 [Accessed 2012 Feb 21]

  63. Boehringer Ingelheim Pharmaceuticals. Phase III Randomized Trial of BIBW 2992 Plus Weekly Paclitaxel Versus Investigator’s Choice of Chemotherapy Following BIBW 2992 Monotherapy in Non-small Lung Cancer Patients Failing Erlotinib or Gefitinib [ClinicalTrials.gov identifier NCT01085136]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT01085136?term=BIBW-2992+and+erlotinib&rank=4 [Accessed 2012 Feb 21]

  64. Janne PA, Schellens JH, Engelman JA, et al. Preliminary activity and safety results from a phase I clinical trial of PF-00299804, an irreversible pan-HER inhibitor, in patients (pts) with NSCLC. In: 2008 American Society of Clinical Oncology (ASCO) Annual Meeting; 2008 May 30–Jun 5; Chicago, IL, USA. J Clin Oncol 2008; 26(May 20 Suppl.): 8027

    Google Scholar 

  65. Janne P, Reckamp K, Koczywas M, et al. Efficacy and safety of PF-00299804 (PF299) in patients (pt) with advanced NSCLC after failure of at least one prior chemotherapy regimen and prior treatment with erlotinib (E): a two-arm, phase II trial. In: 2009 American Society of Clinical Oncology (ASCO) Annual Meeting; 2009 May 29–Jun 2; Chicago, IL, USA. J Clin Oncol 2009; 27 (15S Suppl.): 8063

    Google Scholar 

  66. Janne PA, Reckamp K, Koczywas M, et al. A phase 2 trial of PF-00299804 (PF299), an oral irreversible HER tyrosine kinase inhibitor (TKI), in patients (pts) with advanced NSCLC after failure of prior chemotherapy and erlotinib: preliminary efficacy and safety results [abstract no. A3.1]. J Thorac Oncol 2009; 4(9): S293–4

    Google Scholar 

  67. NCIC Clinical Trials Group. A Double Blind Placebo Controlled Randomized Trial of PF-804 in Patients With Incurable Stage IIIB/IV Non-Small Cell Lung Cancer After Failure of Standard Therapy for Advanced or Metastatic Disease [ClinicalTrials.gov identifier NCT01000025] US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT01000025?term=NCT01000025&rank=1 [Accessed 2012 Feb 21]

  68. Mok T, Spigel DR, Park K, et al. Efficacy and safety of PF-00299804 (PF299), an oral, irreversible, pan-human epidermal growth factor receptor (pan-HER) tyrosine kinase inhibitor (TKI), as first-line treatment (tx) of selected patients (pts) with advanced (adv) non-small cell lung cancer (NSCLC). In: 2010 American Society of Clinical Oncology (ASCO) Annual Meeting; 2010 Jun 4–8; Chicago, IL, USA. J Clin Oncol 2010; 28 (15S Suppl.): 7537

    Google Scholar 

  69. Sequist LV, Besse B, Lynch TJ, et al. Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: results of a phase II trial in patients with advanced non-small-cell lung cancer. J Clin Oncol 2010 Jun 20; 28(18): 3076–83

    Article  PubMed  CAS  Google Scholar 

  70. Gridelli C, Rossi A, Maione P, et al. Vaccines for the treatment of non-small cell lung cancer: a renewed anticancer strategy. Oncologist 2009; 14(9): 909–20

    Article  PubMed  CAS  Google Scholar 

  71. Simmons O, Magee M, Nemunaitis J. Current vaccine updates for lung cancer. Expert Rev Vaccines 2010; 9(3): 323–35

    Article  PubMed  Google Scholar 

  72. Vansteenkiste J, Zielinski M, Linder A, et al. Final results of a multicenter, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer (NSCLC). In: 2007 American Society of Clinical Oncology (ASCO) Annual Meeting; 2007 Jun 1–5; Chicago, IL, USA. J Clin Oncol 2007; 25 (18S Suppl. Pt 1): 7554

    Google Scholar 

  73. Vansteenkiste JF, Zielinski M, Duhabreh IJ, et al. Association of gene expression signature and clinical efficacy of MAGE-A3 antigen specific cancer immunotherapeutic (ASCI) as adjuvant therapy in resected stage IB/II non-small cell lung cancer (NSCLC). In: 2008 American Society of Clinical Oncology (ASCO) Annual Meeting; 2008 May 30–Jun 5; Chicago, IL, USA. J Clin Oncol 2008; 26(May 20 Suppl.): 7501

    Google Scholar 

  74. GlaxoSmithKline. GSK1572932A Antigen-Specific Cancer Immunotherapeutic as Adjuvant Therapy in Patients With Resectable MAGE-A3 Positive Non-Small Cell Lung Cancer [ClinicalTrials.gov identifier NCT00480025]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00480025?term=MAGRIT&rank=1 [Accessed 2012 Feb 21]

  75. Butts C, Murray N, Maksymiuk A, et al. Randomized phase IIB trial of BLP25 liposome vaccine in stage IIIB and IV non-small-cell lung cancer. J Clin Oncol 2005; 23(27): 6674–81

    Article  PubMed  CAS  Google Scholar 

  76. EMD Serono. A Multi-center Phase III Randomized, Double-blind Placebo-controlled Study of the Cancer Vaccine Stimuvax® (L-BLP25 or BLP25 Liposome Vaccine) in Non-small Cell Lung Cancer (NSCLC) Subjects With Unresectable Stage III Disease [ClinicalTrials.gov identifier NCT00409188]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00409188?term=Stimuvax+and+lung&rank=3 [Accessed 2012 Feb 21]

  77. Nemunaitis J, Dillman RO, Schwarzenberger PO, et al. Phase II study of belagenpumatucel-L, a transforming growth factor beta-2 antisense gene-modified allogeneic tumor cell vaccine in non-small-cell lung cancer. J Clin Oncol 2006; 24(29): 4721–30

    Article  PubMed  CAS  Google Scholar 

  78. NovaRx Corporation. Phase III Study of Lucanix™ (Belagenpumatucel-L) in Advanced Non-small Cell Lung Cancer: An International Multicenter, Randomized, Double-blinded, Placebo-controlled Study of Lucanix™ Maintenance Therapy for Stages III/IV NSCLC Subjects Who Have Responded to or Have Stable Disease Following One Regimen of Front-line, Platinum-based Combination Chemotherapy [ClinicalTrials.gov identifier NCT00676507]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00676507?term=Lucanix&rank=1 [Accessed 2012 Feb 21]

  79. Cameron F, Whiteside G, Perry C. Ipilimumab: first global approval. Drugs 2011; 71(8): 1093–104

    Article  PubMed  Google Scholar 

  80. Lynch TJ, Bondarenko IN, Luft A, et al. Phase II trial of ipilimumab (IPI) and paclitaxel/carboplatin (P/C) in first-line stage IIIb/IV non-small cell lung cancer (NSCLC). In: 2010 American Society of Clinical Oncology (ASCO) Annual Meeting; 2010 Jun 4–8; Chicago, IL, USA. J Clin Oncol 2010; 28 (15S Suppl.): 7531

    Google Scholar 

  81. Liu H, Gu D, Xie J. Clinical implications of the hedgehog signaling pathway inhibitors. Chin J Cancer 2011; 30(1): 13–26

    Article  PubMed  Google Scholar 

  82. Bigelow RL, Chari NS, Unden AB, et al. Transcriptional regulation of bcl-2 mediated by the sonic hedgehog signaling pathway through gli-1. J Biol Chem 2004; 279(2): 1197–205

    Article  PubMed  CAS  Google Scholar 

  83. Oliver TG, Grasfeder LL, Carroll AL, et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci U S A 2003; 100(12): 7331–6

    Article  PubMed  CAS  Google Scholar 

  84. Watkins DN, Berman DM, Burkholder SG, et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422(6929): 313–17

    Article  PubMed  CAS  Google Scholar 

  85. Zhao C, Chen A, Jamieson CH, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 2009; 458(7239): 776–9

    Article  PubMed  CAS  Google Scholar 

  86. Chen JK, Taipale J, Cooper MK, et al. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 2002; 16(21): 2743–8

    Article  PubMed  CAS  Google Scholar 

  87. Von Hoff DD, LoRusso PM, Rudin CM, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. ? Engl J Med 2009; 361(12): 1164–72

    Article  Google Scholar 

  88. Rudin CM, Hann CL, Laterra J, et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009; 361(12): 1173–8

    Article  PubMed  CAS  Google Scholar 

  89. Eastern Cooperative Oncology Group. A Randomized Phase II Study of Cisplatin and Etoposide in Combination With Either Hedgehog Inhibitor GDC-0449 or IGF-1R MOAB IMCA12 for Patients With Extensive Stage Small Cell Lung Cancer [ClinicalTrials.gov identifier NCT00887159]. US National Institutes of Health, ClinicalTrials.gov [online]. Available from URL: http://clinicaltrials.gov/ct2/show/NCT00887159?term=GDC-0449++and+lung&rank=1 [Accessed 2012 Feb 21]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Novello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capelletto, E., Novello, S. Emerging New Agents for the Management of Patients with Non-Small Cell Lung Cancer. Drugs 72 (Suppl 1), 37–52 (2012). https://doi.org/10.2165/1163028-S0-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/1163028-S0-000000000-00000

Keywords

Navigation