Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Pegfilgrastim

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Pegfilgrastim is a sustained-duration form of filgrastim, a recombinant methionyl form of human granulocyte colony-stimulating factor (G-CSF), to which a 20 kDa polyethylene glycol molecule is covalently bound to the N-terminal methionine residue. Similar to filgrastim, pegfilgrastim increases the proliferation and differentiation of neutrophils from committed progenitor cells, induces maturation, and enhances the survival and function of mature neutrophils, resulting in dose-dependent increases in neutrophils.

After subcutaneous administration, pegfilgrastim exhibits nonlinear pharmacokinetics and exposure to pegfilgrastim increases in more than a dose-proportional manner, suggesting that the clearance of pegfilgrastim decreases with increased dosing. Filgrastim is primarily eliminated by the kidney and neutrophils/neutrophil precursors; the latter presumably involves binding of the growth factor to the G-CSF receptor on the cell surface, internalization of the growth factor-receptor complexes via endocytosis, and subsequent degradation inside the cells. Pegylation of filgrastim renders renal clearance insignificant, which was demonstrated in bilaterally nephrectomized rats and confirmed in subjects with renal impairment. As a result, the neutrophil-mediated clearance is the predominant elimination pathway for pegfilgrastim.

During chemotherapy-induced neutropenia, the clearance of pegfilgrastim is significantly reduced and the concentration of pegfilgrastim is sustained until onset of neutrophil recovery. Pegfilgrastim concentrations are sustained longer in patients with profound neutropenia. Evidence supports the use of a postnadir absolute neutrophil count (ANC) of ≥1 × 109/L as a surrogate marker threshold for the clearance of pegfilgrastim to subtherapeutic levels. After repeated administration of pegfilgrastim, the peak concentrations of pegfilgrastim decrease, likely due to increased neutrophil and neutrophil precursor mass.

A pharmacokinetic-pharmacodynamic model was developed to describe the pharmacokinetic and ANC profiles of pegfilgrastim; the analysis supported that 100 µg/kg was an adequate weight-based dose of pegfilgrastim and predicted that 6 mg would be an optimal fixed dose of pegfilgrastim to simplify treatment. Data from a pivotal study confirmed that a once-per-chemotherapy-cycle injection of pegfilgrastim at 6 mg was as safe and effective as 11 daily injections of filgrastim at 5 µg/kg in reducing neutropenia and its complications in patients with breast cancer receiving four cycles of doxorubicin/docetaxel chemotherapy. Because of the highly efficient regulation of pegfilgrastim clearance via neutrophils and neutrophil precursors, a single fixed dose of pegfilgrastim can be given once per chemotherapy cycle in conjunction with a variety of myelosuppressive chemotherapy regimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dale D. Current management of chemotherapy-induced neutropenia: the role of colony-stimulating factors. Semin Oncol 2003 Aug; 30 (4 Suppl. 13): 3–9

    Article  PubMed  CAS  Google Scholar 

  2. Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. Blood 1991 Dec 1; 78(11): 2791–808

    PubMed  CAS  Google Scholar 

  3. Welte K, Gabrilove J, Bronchud MH, et al. Filgrastim (r-metHuG-CSF): the first 10 years. Blood 1996 Sep 15; 88(6): 1907–29

    PubMed  CAS  Google Scholar 

  4. Neupogen®(filgrastim): US prescribing information. Thousand Oaks (CA): Amgen Inc., 2010 Mar [online]. Available from URL: http://www.neupogen.com/pdf/Neupogen_PI.pdf [Accessed 2011 Jan 19]

  5. Kuwabara T, Kobayashi S, Sugiyama Y. Pharmacokinetics and pharmaco-dynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev 1996 Nov; 28(4): 625–58

    Article  PubMed  CAS  Google Scholar 

  6. Roskos LK, Cheung E, Vincent M, et al. Pharmacokinetics and pharmaco-dynamics of a recombinant human granulocyte colony-stimulating factor. In: Morstyn G, Dexter M, editors. Filgrastim (r-metHuG-CSF) in clinical practice. 2nd ed. New York: Marcel Dekker, Inc., 1998: 51–71

    Google Scholar 

  7. Metcalf D. Hematopoietic cytokines. Blood 2008 Jan 15; 111(2): 485–91

    Article  PubMed  CAS  Google Scholar 

  8. Bartocci A, Mastrogiannis DS, Migliorati G, et al. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci U S A 1987 Sep; 84(17): 6179–83

    Article  PubMed  CAS  Google Scholar 

  9. Bukowski RM, Budd GT, Gibbons JA, et al. Phase I trial of subcutaneous recombinant macrophage colony-stimulating factor: clinical and immuno-modulatory effects. J Clin Oncol 1994 Jan; 12(1): 97–106

    PubMed  CAS  Google Scholar 

  10. Kato M, Kamiyama H, Okazaki A, et al. Mechanism for the nonlinear pharmacokinetics of erythropoietin in rats. J Pharmacol Exp Ther 1997 Nov; 283(2): 520–7

    PubMed  CAS  Google Scholar 

  11. Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol 2002 Nov-Dec; 69(5-6): 265–74

    Article  PubMed  CAS  Google Scholar 

  12. Gross AW, Lodish HF. Cellular trafficking and degradation of erythropoietin and novel erythropoiesis stimulating protein (NESP). J Biol Chem 2006 Jan 27; 281(4): 2024–32

    Article  PubMed  CAS  Google Scholar 

  13. Nichol JL. The Mpl ligand and platelet homeostasis. Acta Paediatr Suppl. 1998 Jun; 424: 7–15

    Article  PubMed  CAS  Google Scholar 

  14. Scheding S, Bergmann M, Shimosaka A, et al. Human plasma thrombopoietin levels are regulated by binding to platelet thrombopoietin receptors in vivo. Transfusion 2002 Mar; 42(3): 321–7

    Article  PubMed  CAS  Google Scholar 

  15. Petros WP, Rabinowitz J, Stuart AR, et al. Disposition of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving high-dose chemotherapy and autologous bone marrow support. Blood 1992 Sep 1; 80(5): 1135–40

    PubMed  CAS  Google Scholar 

  16. Layton JE, Hockman H, Sheridan WP, et al. Evidence for a novel in vivo control mechanism of granulopoiesis: mature cell-related control of a regulatory growth factor. Blood 1989 Sep; 74(4): 1303–7

    PubMed  CAS  Google Scholar 

  17. Stute N, Santana VM, Rodman JH, et al. Pharmacokinetics of subcutaneous recombinant human granulocyte colony-stimulating factor in children. Blood 1992 Jun 1; 79(11): 2849–54

    PubMed  CAS  Google Scholar 

  18. Kearns CM, Wang WC, Stute N, et al. Disposition of recombinant human granulocyte colony-stimulating factor in children with severe chronic neu-tropenia. J Pediatr 1993 Sep; 123(3): 471–9

    Article  PubMed  CAS  Google Scholar 

  19. Takatani H, Soda H, Fukuda M, et al. Levels of recombinant human granulocyte colony-stimulating factor in serum are inversely correlated with circulating neutrophil counts. Antimicrob Agents Chemother 1996 Apr; 40(4): 988–91

    PubMed  CAS  Google Scholar 

  20. Sturgill MG, Huhn RD, Drachtman RA, et al. Pharmacokinetics of intravenous recombinant human granulocyte colony-stimulating factor (rhG-CSF) in children receiving myelosuppressive cancer chemotherapy: clearance increases in relation to absolute neutrophil count with repeated dosing. Am J Hematol 1997 Feb; 54(2): 124–30

    Article  PubMed  CAS  Google Scholar 

  21. Wang YM, Krzyzanski W, Doshi S, et al. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J 2010; 12: 729–40

    Article  PubMed  CAS  Google Scholar 

  22. Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: molecular mechanisms of action during steady state and ‘emergency’ hema-topoiesis. Cytokine 2008 Jun; 42(3): 277–88

    Article  PubMed  CAS  Google Scholar 

  23. Kuwabara T, Uchimura T, Kobayashi H, et al. Receptor-mediated clearance of G-CSF derivative nartograstim in bone marrow of rats. Am J Physiol 1995 Jul; 269(1 Pt 1): E1–9

    PubMed  CAS  Google Scholar 

  24. Kuwabara T, Uchimura T, Takai K, et al. Saturable uptake of a recombinant human granulocyte colony-stimulating factor derivative, nartograstim, by the bone marrow and spleen of rats in vivo. J Pharmacol Exp Ther 1995 Jun; 273(3): 1114–22

    PubMed  CAS  Google Scholar 

  25. Kuwabara T, Kobayashi S, Sugiyama Y. Kinetic analysis of receptor-mediated endocytosis of G-CSF derivative, nartograstim, in rat bone marrow cells. Am J Physiol 1996 Jul; 271(1 Pt 1): E73–84

    PubMed  CAS  Google Scholar 

  26. Terashi K, Oka M, Ohdo S, et al. Close association between clearance of recombinant human granulocyte colony-stimulating factor (G-CSF) and G-CSF receptor on neutrophils in cancer patients. Antimicrob Agents Chemother 1999 Jan; 43(1): 21–4

    PubMed  CAS  Google Scholar 

  27. Khwaja A, Carver J, Jones HM, et al. Expression and dynamic modulation of the human granulocyte colony-stimulating factor receptor in immature and differentiated myeloid cells. Br J Haematol 1993 Oct; 85(2): 254–9

    Article  PubMed  CAS  Google Scholar 

  28. Piper MG, Massullo PR, Loveland M, et al. Neutrophil elastase down-modulates native G-CSFR expression and granulocyte-macrophage colony formation. J Inflamm (Lond) 2010; 7(1): 5

    Article  Google Scholar 

  29. Tanaka H, Tokiwa T. Influence of renal and hepatic failure on the pharmacokinetics of recombinant human granulocyte colony-stimulating factor (KRN8601) in the rat. Cancer Res 1990 Oct 15; 50(20): 6615–9

    PubMed  CAS  Google Scholar 

  30. Yang BB, Lum PK, Hayashi MM, et al. Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci 2004 May; 93(5): 1367–73

    Article  PubMed  CAS  Google Scholar 

  31. Emmanoual D, Lindheimer M, Katz A. Role of kidney in hormone metabolism and its implications in clinical medicine. Klin Wochenschr 1980; 58: 1005–12

    Article  Google Scholar 

  32. Maack T, Johnson V, Kau ST, et al. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 1979 Sep; 16(3): 251–70

    Article  PubMed  CAS  Google Scholar 

  33. Nielson JT. Handling of proteins in isolated and in vitro perfused proximal tubules from rat kidney. Danish Med Bull 1990; 37: 197–210

    Google Scholar 

  34. Fukuda M, Oka M, Ishida Y, et al. Effects of renal function on pharmacokinetics of recombinant human granulocyte colony-stimulating factor in lung cancer patients. Antimicrob Agents Chemother 2001 Jul; 45(7): 1947–51

    Article  PubMed  CAS  Google Scholar 

  35. Kinstler O, Molineux G, Treuheit M, et al. Mono-N-terminal poly (ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 2002 Jun 17; 54(4): 477–85

    Article  PubMed  CAS  Google Scholar 

  36. Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des 2004; 10(11): 1235–44

    Article  PubMed  CAS  Google Scholar 

  37. Jain A, Jain SK. PEGylation: an approach for drug delivery. A review. Crit Rev Ther Drug Carrier Syst 2008; 25(5): 403–47

    Article  PubMed  CAS  Google Scholar 

  38. Jevsevar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J 2010 Jan;5(1): 113–28

    Article  PubMed  CAS  Google Scholar 

  39. Harris JM, Martin NE, Modi M. Pegylation: a novel process for modifying pharmacokinetics. Clin Pharmacokinet 2001; 40(7): 539–51

    Article  PubMed  CAS  Google Scholar 

  40. Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly (ethylene glycol)-protein conjugates. Adv Drug Deliv Rev 2003 Sep 26; 55(10): 1261–77

    Article  PubMed  CAS  Google Scholar 

  41. Fishburn CS. The pharmacology of PEGylation: balancing PD with PK to generate novel therapeutics. J Pharm Sci 2008 Oct;97(10): 4167–83

    Article  PubMed  CAS  Google Scholar 

  42. Tattini Jr V, Parra DF, Polakiewicz B, et al. Effect of lyophilization on the structure and phase changes of PEGylated-bovine serum albumin. Int J Pharm 2005 Nov 4; 304(1-2): 124–34

    Article  PubMed  CAS  Google Scholar 

  43. Tomiya N, Watanabe K, Awaya J, et al. Modification of acyl-plasmin-strep-tokinase complex with polyethylene glycol: reduction of sensitivity to neutralizing antibody. FEBS Lett 1985 Nov 25; 193(1): 44–8

    Article  PubMed  CAS  Google Scholar 

  44. Abuchowski A, Davis FF. Preparation and properties of polyethylene glycol-trypsin adducts. Biochim Biophys Acta 1979 May 23; 578(1): 41–6

    Article  PubMed  CAS  Google Scholar 

  45. Molineux G, Kinstler O, Briddell B, et al. A new form of filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Exp Hematol 1999 Dec;27(12): 1724–34

    Article  PubMed  CAS  Google Scholar 

  46. Lord BI, Woolford LB, Molineux G. Kinetics of neutrophil production in normal and neutropenic animals during the response to filgrastim (r-metHu G-CSF) or filgrastim SD/01(PEG-r-metHu G-CSF). Clin Cancer Res 2001 Jul;7(7): 2085–90

    PubMed  CAS  Google Scholar 

  47. Johnston E, Crawford J, Blackwell S, et al. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol 2000 Jul;18(13): 2522–8

    PubMed  CAS  Google Scholar 

  48. Holmes FA, O’Shaughnessy JA, Vukelja S, et al. Blinded, randomized, multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer. J Clin Oncol 2002 Feb 1; 20(3): 727–31

    Article  PubMed  CAS  Google Scholar 

  49. Green MD, Koelbl H, Baselga J, et al. A randomized double-blind multicenter phase III study of fixed-dose single-administration pegfilgrastim versus daily filgrastim in patients receiving myelosuppressive chemotherapy. Ann Oncol 2003 Jan;14(1): 29–35

    Article  PubMed  CAS  Google Scholar 

  50. Roskos LK, Lum P, Lockbaum P, et al. Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol 2006 Jul;46(7): 747–57

    Article  PubMed  CAS  Google Scholar 

  51. Morstyn G, Campbell L, Souza LM, et al. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 1988 Mar 26; 1(8587): 667–72

    Article  PubMed  CAS  Google Scholar 

  52. Data on file, Amgen Inc., 2011

  53. Yang BB. Integration of pharmacokinetics and pharmacodynamics into the drug development of pegfilgrastim, a pegylated protein. In: Meibohm B, editor. Pharmacokinetics and pharmacodynamics of biotech drugs. Weinheim: Wiley-VCH Verlag GmbH, 2006: 373–93

    Chapter  Google Scholar 

  54. Holmes FA, Jones SE, O’Shaughnessy J, et al. Comparable efficacy and safety profiles of once-per-cycle pegfilgrastim and daily injection filgrastim in chemotherapy-induced neutropenia: a multicenter dose-finding study in women with breast cancer. Ann Oncol 2002 Jun;13(6): 903–9

    Article  PubMed  CAS  Google Scholar 

  55. Sierra J, Szer J, Kassis J, et al. A single dose of pegfilgrastim compared with daily filgrastim for supporting neutrophil recovery in patients treated for low-to-intermediate risk acute myeloid leukemia: results from a randomized, double-blind, phase 2 trial. BMC Cancer 2008; 8: 195

    Article  PubMed  Google Scholar 

  56. Kotto-Kome AC, Fox SE, Lu W, et al. Evidence that the granulocyte colony-stimulating factor (G-CSF) receptor plays a role in the pharmacokinetics of G-CSF and PegG-CSF using a G-CSF-R KO model. Pharmacol Res 2004 Jul;50(1): 55–8

    Article  PubMed  CAS  Google Scholar 

  57. Farese AM, Yang BB, Roskos L, et al. Pegfilgrastim, a sustained-duration form of filgrastim, significantly improves neutrophil recovery after auto-logous marrow transplantation in rhesus macaques. Bone Marrow Transplant 2003 Aug;32(4): 399–404

    Article  PubMed  CAS  Google Scholar 

  58. Wang B, Ludden TM, Cheung EN, et al. Population pharmacokinetic-pharmacodynamic modeling of filgrastim (r-metHuG-CSF) in healthy volunteers. J Pharmacokinet Pharmacodyn 2001 Aug;28(4): 321–42

    Article  PubMed  CAS  Google Scholar 

  59. Porter CJ, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci 2000 Mar;89(3): 297–310

    Article  PubMed  CAS  Google Scholar 

  60. Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res 1990 Feb;7(2): 167–9

    Article  PubMed  CAS  Google Scholar 

  61. Lau D, Pilz D, Schwab G. Phase I pharmacokinetic and pharmacodynamic studies of G-CSF(filgrastim) in patients with renal or liver impairment compared to healthy volunteers [abstract]. Br J Haematol 1996; 93 Suppl. 2: 277

    Google Scholar 

  62. Yang BB, Kido A, Salfi M, et al. Pharmacokinetics and pharmacodynamics of pegfilgrastim in subjects with various degrees of renal function. J Clin Pharmacol 2008 Sep;48(9): 1025–31

    Article  PubMed  CAS  Google Scholar 

  63. Yang B-B, Savin MA, Green M. Prevention of chemotherapy-induced neutropenia with pegfilgrastim: pharmacokinetics and patient outcomes. Am J Hematol Oncol 2011; 10: 13–20

    Google Scholar 

  64. Mayani H. Human preleukemia: cellular, molecular and clinical aspects. Arch Med Res 1993; 24(4): 317–25

    PubMed  CAS  Google Scholar 

  65. Yang BB, Lum P, Renwick J, et al. Pharmacokinetic rationale for a fixed-dose regimen of a sustained-duration form of filgrastim in cancer patients [abstract]. Blood 2000; 96 (11 Suppl. 1): 157b

    Google Scholar 

  66. George S, Yunus F, Case D, et al. Fixed-dose pegfilgrastim is safe and allows neutrophil recovery in patients with non-Hodgkin’s lymphoma. Leuk Lymphoma 2003 Oct;44(10): 1691–6

    Article  PubMed  CAS  Google Scholar 

  67. Neulasta®(pegfilgrastim): US prescribing information. Thousand Oaks (CA): Amgen Inc., 2010 [online]. Available from URL: http://pi.amgen.com/united_states/neulasta/neulasta_pi_hcp_english.pdf [Accessed 2011 Jan 19]

  68. Aapro MS, Cameron DA, Pettengell R, et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur J Cancer 2006 Oct;42(15): 2433–53

    Article  PubMed  CAS  Google Scholar 

  69. Burstein HJ. Myeloid growth factor support for dose-dense adjuvant chemotherapy for breast cancer. Oncology (Williston Park) 2006 Dec; 20 (14 Suppl. 9): 13–5

    Google Scholar 

  70. Marangolo M, Bengala C, Conte PF, et al. Dose and outcome: the hurdle of neutropenia (review). Oncol Rep 2006 Aug;16(2): 233–48

    PubMed  CAS  Google Scholar 

  71. Danova M, Bencardino K, Manzoni M, et al. In vivo biological effects of pegfilgrastim after myelosuppressive chemotherapy in breast cancer. Anti-cancer Res 2007 Sep-Oct; 27(5A): 3399–402

    CAS  Google Scholar 

  72. Invernizzi R, Grasso D, Travaglino E, et al. Biological effects of pegfilgrastim on circulating neutrophils in breast cancer patients undergoing dose-dense chemotherapy. Oncology 2008; 75(3-4): 237–44

    Article  PubMed  CAS  Google Scholar 

  73. Yang BB, Kido A, Shibata A. Serum pegfilgrastim concentrations during recovery of absolute neutrophil count in patients with cancer receiving pegfilgrastim after chemotherapy. Pharmacotherapy 2007 Oct;27(10): 1387–93

    Article  PubMed  CAS  Google Scholar 

  74. Pirker R, Ulsperger E, Messner J, et al. Achieving full-dose, on-schedule administration of ACE chemotherapy every 14 days for the treatment of patients with extensive small-cell lung cancer. Lung 2006 Sep-Oct; 184(5): 279–85

    Article  PubMed  CAS  Google Scholar 

  75. Lopez A, de Sevilla AF, Castaigne S, et al. Pegfilgrastim supports delivery of CHOP-R chemotherapy administered every 14 days: a randomised phase II study [abstract no. 3311]. Blood 2004; 104(11 Pt 1): 904–5a

    Google Scholar 

  76. Engert A, Bredenfeld H, Dohner H, et al. Pegfilgrastim support for full delivery of BEACOPP-14 chemotherapy for patients with high-risk Hodgkin’s lymphoma: results of a phase II study. Haematologica 2006 Apr;91(4): 546–9

    PubMed  CAS  Google Scholar 

  77. Data on file, Amgen Inc., 2004–5

Download references

Acknowledgements

This work was supported by Amgen Inc. The authors wish to acknowledge the Amgen Pegfilgrastim Global Development Team. The authors thank Juan José Pérez Ruixo, PhD, Mi Rim Choi, MD, MBA, May Mo, MS, Holly Watson, MS, AOCN, and Lyndah Dreiling, MD, for reviewing the manuscript. Editorial assistance was provided by Julia R. Gage, PhD, on behalf of Amgen Inc. Both authors are employees and shareholders of Amgen Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Bing Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, BB., Kido, A. Pharmacokinetics and Pharmacodynamics of Pegfilgrastim. Clin Pharmacokinet 50, 295–306 (2011). https://doi.org/10.2165/11586040-000000000-00000

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/11586040-000000000-00000

Keywords

Navigation