Skip to main content
Log in

Occupational Methaemoglobinaemia

Mechanisms of Production, Features, Diagnosis and Management Including the Use of Methylene Blue

  • Review Article
  • Published:
Toxicological Reviews

Abstract

Methaemoglobin is formed by oxidation of ferrous (FeII) haem to the ferric (FIII) state and the mechanisms by which this occurs are complex. Most cases are due to one of three processes. Firstly, direct oxidation of ferrohaemoglobin, which involves the transfer of electrons from ferrous haem to the oxidising compound. This mechanism proceeds most readily in the absence of oxygen. Secondly, indirect oxidation, a process of co-oxidation which requires haemoglobin-bound oxygen and is involved, for example, in nitrite-induced methaemoglobinaemia. Thirdly, biotransformation of a chemical to an active intermediate that initiates methaemoglobin formation by a variety of mechanisms. This is the means by which most aromatic compounds, such as amino- and nitro-derivatives of benzene, produce methaemoglobin.

Methaemoglobinaemia is an uncommon occupational occurrence. Aromatic compounds are responsible for most cases, their lipophilic nature and volatility facilitating absorption during dermal and inhalational exposure, the principal routes implicated in the workplace.

Methaemoglobinaemia presents clinically with symptoms and signs of tissue hypoxia. Concentrations around 80% are life-threatening. Features of toxicity may develop over hours or even days when exposure, whether by inhalation or repeated skin contact, is to relatively low concentrations of inducing chemical(s). Not all features observed in patients with methaemoglobinaemia are due to methaemoglobin formation. For example, the intravascular haemolysis caused by oxidising chemicals such as chlorates poses more risk to life than the methaemoglobinaemia that such chemicals induce.

If an occupational history is taken, the diagnosis of methaemoglobinaemia should be relatively straightforward. In addition, two clinical observations may help: firstly, the victim is often less unwell than one would expect from the severity of ‘cyanosis’ and, secondly, the ‘cyanosis’ is unresponsive to oxygen therapy. Pulse oximetry is unreliable in the presence of methaemoglobinaemia. Arterial blood gas analysis is mandatory in severe poisoning and reveals normal partial pressures of oxygen (pO2) and carbon dioxide (pCO2,), a normal ‘calculated’ haemoglobin oxygen saturation, an increased methaemoglobin concentration and possibly a metabolic acidosis.

Following decontamination, high-flow oxygen should be given to maximise oxygen carriage by remaining ferrous haem. No controlled trial of the efficacy of methylene blue has been performed but clinical experience suggests that methylene blue can increase the rate of methaemoglobin conversion to haemoglobin some 6-fold. Patients with features and/or methaemoglobin concentrations of 30–50%, should be administered methylene blue 1–2 mg/kg/bodyweight intravenously (the dose depending on the severity of the features), whereas those with methaemoglobin concentrations exceeding 50% should be given methylene blue 2 mg/kg intravenously. Symptomatic improvement usually occurs within 30 minutes and a second dose of methylene blue will be required in only very severe cases or if there is evidence of ongoing methaemoglobin formation. Methylene blue is less effective or ineffective in the presence of glucose-6-phosphate dehydrogenase deficiency since its antidotal action is dependent on nicotinamide-adenine dinucleotide phosphate (NADP+). In addition, methylene blue is most effective in intact erythrocytes; efficacy is reduced in the presence of haemolysis. Moreover, in the presence of haemolysis, high dose methylene blue (20–30 mg/kg) can itself initiate methaemoglobin formation.

Supplemental antioxidants such as ascorbic acid (vitamin C), N-acetylcysteine and tocopherol (vitamin E) have been used as adjuvants or alternatives to methylene blue with no confirmed benefit. Exchange transfusion may have a role in the management of severe haemolysis or in G-6-P-D deficiency associated with life-threatening methaemoglobinaemia where methylene blue is relatively contraindicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Table I.
Fig. 2.
Table II.
Table III.
Fig. 3.
Fig. 4.
Table IV.
Fig. 5.

Similar content being viewed by others

References

  1. Bunn HF, Forget BG. Hemoglobin oxidation: methemoglobin, methemoglobinemia and sulfhemoglobinemia. In: Hemoglobin: molecular, genetic and clinical aspects. Philadelphia (PA): WB Saunders, 1986: 634–62

    Google Scholar 

  2. Eyer P, Klimmek R. Blood and blood-forming organs. In: Marquardt H, Schäfer SG, McClellan RO, et al., editors. Toxicology. San Diego (CA): Academic Press, 1999: 349–69

    Chapter  Google Scholar 

  3. Kiese M. The biochemical production of ferrihemoglobin-forming derivatives from aromatic amines, and mechanisms of ferrihemoglobin formation. Pharmacol Rev 1966; 18: 1091–161

    PubMed  CAS  Google Scholar 

  4. Liao Y-P, Hung D-Z, Yang D-Y. Hemolytic anemia after methylene blue therapy for aniline-induced methemoglobinemia. Vet Hum Toxicol 2002; 44: 19–21

    PubMed  Google Scholar 

  5. Holstege C, Snyder L, Cisek J, et al. Profound methemoglobinemia induced by dermal and inhalation exposure to aniline dye [abstract]. J Toxicol Clin Toxicol 1999; 37: 621

    Google Scholar 

  6. Demirel H, Koster VS, Koot MJ, et al. Methemoglobinemia as an uncommon cause of cyanosis. Neth J Med 1999; 55: 19–22

    Article  PubMed  CAS  Google Scholar 

  7. Phillips DM, Gradisek R, Heiselman DE. Methemoglobinemia secondary to aniline exposure. Ann Emerg Med 1990; 19: 425–9

    Article  PubMed  CAS  Google Scholar 

  8. Harvey JW, Keitt AS. Studies of the efficacy and potential hazards of methylene blue therapy in aniline-induced methaemoglobinaemia. Br J Haematol 1983; 54: 29–41

    Article  PubMed  CAS  Google Scholar 

  9. Sekimpi DK, Jones RD. Notifications of industrial chemical cyanosis poisoning in the United Kingdom 1961–80. Br J Ind Med 1986; 43: 272–9

    PubMed  CAS  Google Scholar 

  10. Harrison MR. Toxic methaemoglobinaemia: a case of acute nitrobenzene and aniline poisoning treated by exchange transfusion. Anaesthesia 1977; 32: 270–2

    Article  PubMed  CAS  Google Scholar 

  11. Wuertz RL, Frazee Jr WH, Hume WG, et al. Chemical cyanosis-anemia syndrome: diagnosis, treatment and recovery. Arch Environ Health 1964; 9: 478–91

    PubMed  CAS  Google Scholar 

  12. Morse DL, Baker Jr EL, Kimbrough RD, et al. Propanil-chloracne and methomyl toxicity in workers of a pesticide manufacturing plant. J Toxicol Clin Toxicol 1979; 15: 13–21

    Article  CAS  Google Scholar 

  13. Kulkarni BS, Acharya VN, Khanna RM, et al. Methemoglobinemia due to nitroaniline intoxication: review of the literature with a report of 9 cases. J Postgrad Med 1969; 15: 192–200

    PubMed  CAS  Google Scholar 

  14. Jain SM, Dilipkumar BS, Kakrani AL. Aniline dye poisoning. J Indian Med Assoc 1975; 65: 51–2

    PubMed  CAS  Google Scholar 

  15. Laure P, Stierle F. Methaemoglobinaemia: an unusual case report [letter]. Intensive Care Med 1993; 19: 124

    Article  PubMed  CAS  Google Scholar 

  16. NIOSH. Methemoglobinemia due to occupational exposure to dinitrobenzene: Ohio, 1986. Arch Dermatol 1988; 124: 1171–2

    Article  Google Scholar 

  17. Ishihara N, Kanaya A, Ikeda M. m-Dinitrobenzene intoxication due to skin absorption. Int Arch Occup Environ Health 1976; 36: 161–8

    Article  PubMed  CAS  Google Scholar 

  18. Kokal KC, Khanna SS, Retnam VJ, et al. Methemoglobinaemia: an unusual presentation. J Assoc Physicians India 1984; 32: 833–4

    PubMed  CAS  Google Scholar 

  19. Minami M, Katsumata M, Tomoda A. Methemoglobinemia with oxidized hemoglobins and modified hemoglobins found in bloods of workers handling aromatic compounds and in those of a man who drank cresol solution. Biomedica Biochimica Acta 1990; 49: S327–33

    PubMed  CAS  Google Scholar 

  20. El-Waseef A. Methemoglobinemia in workers exposed to some aromatic compounds. Pakistan J Biochem 1982; 15: 76–82

    Google Scholar 

  21. Johnson PN, Sullivan FM, Lewander WJ. Methemoglobinemia following occupational exposure to sodium betanaphthol disulfonate (R salt) [abstract]. Vet Hum Toxicol 1987; 29: 460

    Google Scholar 

  22. Iserson KV, Banner W, Froede RC, et al. Failure of dialysis therapy in potassium dichromate poisoning. J Emerg Med 1983; 1: 143–9

    Article  PubMed  CAS  Google Scholar 

  23. Beer ST, Bradberry SM, Vale JA. Copper sulphate. UKPID monograph. In: IPCS Intox CD ROM. Geneva: World Health Organization, 2000

    Google Scholar 

  24. Harris JC, Rumack BH, Peterson RG, et al. Methemoglobinemia resulting from absorption of nitrates. JAMA 1979; 242: 2869–71

    Article  PubMed  CAS  Google Scholar 

  25. Bradberry SM, Gazzard B, Vale JA. Methemoglobinemia caused by the accidental contamination of drinking water with sodium nitrite. J Toxicol Clin Toxicol 1994; 32: 173–8

    Article  PubMed  CAS  Google Scholar 

  26. Fleetham JA, Tunnicliffe BW, Munt PW. Methemoglobinemia and the oxides of nitrogen [letter]. N Engl J Med 1978; 298: 1150

    PubMed  CAS  Google Scholar 

  27. Wax PM, Hoffman RS. Methemoglobinemia: an occupational hazard of phenylpropanolamine production. J Toxicol Clin Toxicol 1994; 32: 299–303

    Article  PubMed  CAS  Google Scholar 

  28. Shults WT, Fountain EN, Lynch EC. Methanethiol poisoning: irreversible coma and hemolytic anemia following inhalation. JAMA 1970; 211: 2153–4

    Article  PubMed  CAS  Google Scholar 

  29. Kosaka H, Tyuma I. Mechanism of autocatalytic oxidation of oxyhemoglobin by nitrite. Environ Health Perspect 1987; 73: 147–51

    Article  PubMed  CAS  Google Scholar 

  30. Arduini A, Mancinelli G, Radatti GL, et al. Possible mechanism of inhibition of nitrite-induced oxidation of oxyhemoglobin by ergothioneine and uric acid. Arch Biochem Biophys 1992; 294: 398–402

    Article  PubMed  CAS  Google Scholar 

  31. Kiese M. Methemoglobinemia: a comprehensive treatise. Causes, consequences, and correction of increased contents of ferrihemoglobin in blood. Cleveland (OH): CRC Press, 1974

    Google Scholar 

  32. Mclean S, Starmer GA, Thomas J. Methaemoglobin formation by aromatic amines. J Pharm Pharmacol 1969; 21: 441–50

    Article  PubMed  CAS  Google Scholar 

  33. Benya TJ, Cornish HH. Aromatic nitro and amino compounds. In: Clayton GD, Clayton FE, editors. Patty’s industrial hygiene and toxicology. 4th ed. New York: John Wiley & Sons, 1994: 947–1085

    Google Scholar 

  34. Cnubben NH, Soffers EM, Peters MA, et al. Influence of the halogen-substituent pattern of fluoronitrobenzenes on their biotransformation and capacity to induce methemoglobinemia. Toxicol Appl Pharmacol 1996; 139: 71–83

    Article  PubMed  CAS  Google Scholar 

  35. Hoffman RS, Sauter D. Methemoglobinemia resulting from smoke inhalation. Vet Hum Toxicol 1989; 31: 168–70

    PubMed  CAS  Google Scholar 

  36. Heyndrickx A, Van Steenberge M. Methemoglobinemia in patients attacked by chemical and microbiological warfare agents. Arch Belg 1984; Suppl.: 69–73

    Google Scholar 

  37. Chikhalikar AA, Golwalla AF, Shah AB. Acute toxic methemoglobinemia in industrial workers: a medical emergency. J Assoc Physicians India 1977; 25: 233–6

    PubMed  CAS  Google Scholar 

  38. Bradberry SM, Whittington RM, Parry DA, et al. Fatal methemoglobinemia due to inhalation of isobutyl nitrite. J Toxicol Clin Toxicol 1994; 32: 179–84

    Article  PubMed  CAS  Google Scholar 

  39. Lee DBN, Brown DL, Baker LRI, et al. Hematological complications of chlorate poisoning. BMJ 1970; 2: 31–2

    Article  PubMed  CAS  Google Scholar 

  40. O’Grady J, Jarecsni E. Sodium chlorate poisoning. Br J Clin Pract 1971; 25: 38–9

    PubMed  Google Scholar 

  41. Reay DT, Insalaco SJ, Eisele JW. Postmortem methemoglobin concentrations and their significance. J Forensic Sci 1984; 29: 1160–3

    PubMed  CAS  Google Scholar 

  42. Wright RO, Lewander WJ, Woolf AD. Methemoglobinemia: etiology, pharmacology, and clinical management. Ann Emerg Med 1999; 34: 646–56

    Article  PubMed  CAS  Google Scholar 

  43. Geiger JC. Cyanide poisoning in San Francisco. JAMA 1932; 99: 1944–5

    Article  Google Scholar 

  44. Hanzlik PJ. Methylene blue as antidote for cyanide poisoning [letter]. JAMA 1933; 100: 357

    Article  Google Scholar 

  45. Williams JR, Challis FE. Methylene blue as an antidote for aniline dye poisoning: case report with confirmatory experimental study. J Lab Clin Med 1933; 19: 166–71

    CAS  Google Scholar 

  46. Wendel WB. The control of methemoglobinemia with methylene blue. J Clin Invest 1939; 18: 179–85

    Article  PubMed  CAS  Google Scholar 

  47. Bodansky O, Gutmann H. Treatment of methemoglobinemia. J Pharm Exp Ther 1947; 89: 46–56

    Google Scholar 

  48. Gutmann HR, Jandorf BJ, Bodansky O. The role of pyridine nucleotides in the reduction of methemoglobin. J Biol Chem 1947; 169: 145–52

    PubMed  CAS  Google Scholar 

  49. Bodansky O. Mechanism of action of methylene blue in treatment of methemoglobinemia [letter]. JAMA 1950; 142: 923

    Article  Google Scholar 

  50. Sass MD, Caruso CJ, Axelrod DR. Mechanism of the TPNH-linked reduction of methemoglobin by methylene blue. Clin Chim Acta 1969; 24: 77–85

    Article  PubMed  CAS  Google Scholar 

  51. Tomoda A, Ida M, Tsuji A, et al. Mechanism of methaemoglobin reduction by human erythrocytes. Biochem J 1980; 188: 535–40

    PubMed  CAS  Google Scholar 

  52. Di Santo AR, Wagner JG. Pharmacokinetics of highly ionised drugs II. Methylene blue: absorption, metabolism and excretion in man and dog after oral administration. J Pharm Sci 1972; 61: 1086–90

    Article  Google Scholar 

  53. Di Santo AR, Wagner JG. Pharmacokinetics of highly ionised drugs III. Methylene blue: blood levels in the dog and tissue levels in the rat following intravenous administration. J Pharm Sci 1972; 61: 1090–4

    Article  Google Scholar 

  54. Nathan DM, Siegel AJ, Bunn HF. Acute methemoglobinemia and hemolytic anemia with phenazopyridine: possible relation to acute renal failure. Arch Intern Med 1977; 137: 1636–8

    Article  PubMed  CAS  Google Scholar 

  55. Zimmerman RC, Green ED, Ghurabi WH, et al. Methemoglobinemia from overdose of phenazopyridine hydrochloride. Ann Emerg Med 1980; 9: 147–9

    Article  PubMed  CAS  Google Scholar 

  56. Spielman FJ, Anderson JA, Terry WC. Benzocaine-induced methemoglobinemia during general anesthesia. J Oral Maxillofac Surg 1984; 42: 740–3

    Article  PubMed  CAS  Google Scholar 

  57. Foxworth JW, Roberts JA, Mahmoud SF. Acquired methemoglobinemia: a case report. Mo Med 1987; 84: 187–9

    PubMed  CAS  Google Scholar 

  58. Wilson G, Borthwick T, Lamb R. Toxic methemoglobinemia. J Tenn Med Assoc 1989; 82: 581–3

    PubMed  CAS  Google Scholar 

  59. Sandza Jr JG, Roberts RW, Shaw RC, et al. Symptomatic methemoglobinemia with a commonly used topical anesthetic, cetacaine. Ann Thorac Surg 1980; 30: 187–90

    Article  PubMed  Google Scholar 

  60. Guss DA, Normann SA, Manoguerra AS. Clinically significant methemoglobinemia from inhalation of isobutyl nitrite. Am J Emerg Med 1985; 3: 46–7

    Article  PubMed  CAS  Google Scholar 

  61. Ferraro L, Zeichner S, Greenblott G, et al. Cetacaine-induced acute methemoglobinemia. Anesthesiology 1988; 69: 614–5

    Article  PubMed  CAS  Google Scholar 

  62. Fincher ME, Campbell HT. Methemoglobinemia and hemolytic anemia after phenazopyridine hydrochloride (pyridium) administration in end-stage renal disease. South Med J 1989; 82: 372–4

    Article  PubMed  CAS  Google Scholar 

  63. Bardoczky GI, Wathieu M, D’Hollander A. Prilocaine-induced methemoglobinemia evidenced by pulse oximetry. Acta Anaesthesiol Scand 1990; 34: 162–4

    Article  PubMed  CAS  Google Scholar 

  64. Caudill L, Walbridge VJ, Kuhn G. Methemoglobinemia as a cause of coma. Ann Emerg Med 1990; 19: 677–9

    Article  PubMed  CAS  Google Scholar 

  65. Grum DF, Rice TW. Methemoglobinemia from topical benzocaine. Cleve Clin J Med 1990; 57: 357–9

    PubMed  CAS  Google Scholar 

  66. White CD, Weiss LD. Varying presentations of methemoglobinemia: two cases. J Emerg Med 1991; 9: 45–9

    Article  PubMed  Google Scholar 

  67. Bhutani A, Bhutani MS, Patel R. Methemoglobinemia in a patient undergoing gastrointestinal endoscopy. Ann Pharmacother 1992; 26: 1239–40

    PubMed  CAS  Google Scholar 

  68. McKinney CD, Postiglione KF, Herold DA. Benzocaine-adulterated street cocaine in association with methemoglobinemia. Clin Chem 1992; 38: 596–7

    PubMed  CAS  Google Scholar 

  69. Muchmore EA, Dahl BJ. One blue man with mucositis [letter]. N Engl J Med 1992; 327: 133

    Article  PubMed  CAS  Google Scholar 

  70. Cline MS. Curing the ‘nitrate blues’. Postgrad Med 1994; 96: 124–6

    PubMed  CAS  Google Scholar 

  71. Hornfeldt CS, Rabe III WH. Nitroethane poisoning from an artificial fingernail remover. J Toxicol Clin Toxicol 1994; 32: 321–4

    Article  PubMed  CAS  Google Scholar 

  72. Rodriguez LF, Smolik LM, Zbehlik AJ. Benzocaine-induced methemoglobinemia: report of a severe reaction and review of the literature. Ann Pharmacother 1994; 28: 643–9

    PubMed  CAS  Google Scholar 

  73. Hovenga S, Koenders MEF, van der Werf TS, et al. Methaemoglobinaemia after inhalation of nitric oxide for treatment of hydrochlorothiazide-induced pulmonary oedema. Lancet 1996; 348: 1035–6

    Article  PubMed  CAS  Google Scholar 

  74. Kearney TE, Manoguerra AS, Dunford Jr JV. Chemically induced methemoglobinemia from aniline poisoning. West J Med 1984; 140: 282–6

    PubMed  CAS  Google Scholar 

  75. Wendel WB. Use of methylene blue in methemoglobinemia from sulfanilamide poisoning [letter]. JAMA 1937; 109: 1216

    Article  Google Scholar 

  76. Kohn MC, Melnick RL, Ye F, et al. Pharmacokinetics of sodium nitrite-induced methemoglobinemia in the rat. Drug Metab Dispos 2002; 30: 676–83

    Article  PubMed  CAS  Google Scholar 

  77. Goldstein BD. Exacerbation of dapsone-induced Heinz body hemolytic anemia following treatment with methylene blue. Am J Med Sci 1974; 267: 291–7

    Article  PubMed  CAS  Google Scholar 

  78. Stossel TP, Jennings RB. Failure of methylene blue to produce methemoglobinemia in vivo. Am J Clin Pathol 1966; 45: 600–4

    PubMed  CAS  Google Scholar 

  79. Goluboff N, Wheaton R. Methylene blue induced cyanosis and acute hemolytic anemia complicating the treatment of methemoglobinemia. J Pediatr 1961; 58: 86–9

    Article  PubMed  CAS  Google Scholar 

  80. Sills MR, Zinkham WH. Methylene blue-induced Heinz body hemolytic anemia. Arch Pediatr Adolesc Med 1994; 148: 306–10

    Article  PubMed  CAS  Google Scholar 

  81. Rosen PJ, Johnson C, McGehee WG, et al. Failure of methylene blue treatment in toxic methemoglobinemia: association with glucose-6-phosphate dehydrogenase deficiency. Ann Intern Med 1971; 75: 83–6

    PubMed  CAS  Google Scholar 

  82. Smith RP, Thron CD. Hemoglobin, methylene blue and oxygen interactions in human red cells. J Pharmacol Exp Ther 1972; 183: 549–58

    PubMed  CAS  Google Scholar 

  83. Eysseric H, Vincent F, Peoc’h M, et al. A fatal case of chlorate poisoning: confirmation by ion chromatography of body fluids. J Forensic Sci 2000; 45: 474–7

    PubMed  CAS  Google Scholar 

  84. Steffen C, Wetzel E. Chlorate poisoning: mechanism of toxicity. Toxicology 1993; 84: 217–31

    Article  PubMed  CAS  Google Scholar 

  85. Smith RP, Olson MV. Drug-induced methemoglobinemia. Semin Hematol 1973; 10: 253–68

    PubMed  CAS  Google Scholar 

  86. Layne WR, Smith RP. Methylene blue uptake and the reversal of chemically induced methemoglobinemias in human erythrocytes. J Pharmacol Exp Ther 1969; 165: 36–44

    PubMed  CAS  Google Scholar 

  87. Hartmann AF, Perley AM, Barnett HL. A study of some of the physiological effects of sulfanilamide II. Methemoglobin formation and its control. J Clin Invest 1938; 17: 699–710

    Article  PubMed  CAS  Google Scholar 

  88. Perry PM, Meinhard E. Necrotic subcutaneous abscesses following injections of methylene blue. Br J Clin Pract 1974; 28: 289–91

    PubMed  CAS  Google Scholar 

  89. Nadler JE, Green H, Rosenbaum A. Intravenous injection of methylene blue in man with reference to its toxic symptoms and effect on the electrocardiogram. Am J Med Sci 1934; 188: 15–21

    Article  CAS  Google Scholar 

  90. Whitwam JG, Taylor AR, White JM. Potential hazard of methylene blue. Anaesthesia 1979; 34: 181–2

    Article  PubMed  CAS  Google Scholar 

  91. Schleifer WF, Chapin JW, Cuka DJ, et al. Methylene blue and pulse oximeter readings in a patient undergoing transurethral procedure. Urology 1990; 36: 537–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally M. Bradberry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradberry, S.M. Occupational Methaemoglobinaemia. Toxicol Rev 22, 13–27 (2003). https://doi.org/10.2165/00139709-200322010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00139709-200322010-00003

Keywords

Navigation