Skip to main content
Log in

Androgen Receptor Mutations in Carcinoma of the Prostate

Significance for Endocrine Therapy

  • Genomics in Human Disease
  • Published:
American Journal of Pharmacogenomics

Abstract

Endocrine therapy for advanced prostate cancer involves androgen ablation (orchiectomy or application of luteinizing hormone releasing hormone analogs) and/or blockade of the androgen receptor (AR) with either steroidal (cyproterone acetate) or nonsteroidal (hydroxyflutamide, bicalutamide and nilutamide) antiandrogens. These antagonists prevent androgen-induced conformational change and activation of the AR. During long term androgen ablation, the AR adapts to an environment with low androgen concentrations and becomes hypersensitive to low concentrations of androgens, either alone or in combination with various cellular regulators. Bicalutamide can switch from antagonist to agonist during long-term androgen withdrawal, as shown in prostate cancer LNCaP cells.

AR point mutations were detected in metastatic lesions from human prostate cancer more frequently than in primary tumors. Although functional characterization of only some mutant AR detected in prostate cancer tissue has been performed, data available suggest that they are activated by dihydrotestosterone, its precursors and metabolites, synthetic androgens, estrogenic and progestagenic steroids and hydroxyflutamide. A direct association between AR mutations and endocrine withdrawal syndrome has been investigated in only one study thus far. There is no evidence at present that activation of any of the mutant AR genes detected in prostate cancer is enhanced in the presence of a nonsteroidal AR stimulator.

Coactivators of the AR are proteins that associate with the receptor, possess histone acetylase activity and facilitate AR activation. The coregulatory proteins ARA70 and ARA160 differentially affected the activity of the mutated AR Glu231→Gly, which was discovered in a mouse authochthonous prostate tumor. ARA70 enhanced receptor activation by both androgen and estradiol, whereas ARA160 augmented only androgen-induced AR activity. Novel experimental therapies that down-regulate AR expression have been developed; they include the application of ribozymes and antisense oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Huggins C, Hodges CV. Studies on prostatic cancer: the effects of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res 1941 1: 293–7

    CAS  Google Scholar 

  2. Gottlieb B, Pinsky L, Beitel LK, et al. Androgen insensitivity. Am J Med Genet 1999; 89: 210–17

    Article  PubMed  CAS  Google Scholar 

  3. Kallio PJ, Jänne OA, Palvimo JJ. Agonists, but not antagonists, alter the conformation of the hormone-binding domain of androgen receptor. Endocrinology 1994; 134: 998–1001

    Article  PubMed  CAS  Google Scholar 

  4. Van der Kwast TH, Schalken J, Ruizeveld de Winter JA, et al. Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer 1991; 48: 189–93

    Article  PubMed  Google Scholar 

  5. Sadi MV, Walsh PC, Barrack ER. Immunohistochemical study of androgen receptors in metastatic prostate cancer-comparison of receptor content and response to hormonal therapy. Cancer 1991; 67: 3057–64

    Article  PubMed  CAS  Google Scholar 

  6. Hobisch A, Culig Z, Radmayr C, et al. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res 1995; 55: 3068–72

    PubMed  CAS  Google Scholar 

  7. Hobisch A, Culig Z, Radmayr C, et al. Androgen receptor status of lymph node metastases from prostate cancer. Prostate 1996; 28: 129–35

    Article  PubMed  CAS  Google Scholar 

  8. Nazareth LV, Stenoien DL, Bingman WE 3rd, et al. A C619Y mutation in the human androgen receptor causes inactivation and mislocalization of the receptor with concomitant sequestration of SRC-1. Mol Endocrinol 1999; 13: 2065–75

    Article  PubMed  CAS  Google Scholar 

  9. Horoszewicz JS, Leong SS, Kawinski E, et al. LNCaP model of human prostatic carcinoma. Cancer Res 1983; 43: 1809–18

    PubMed  CAS  Google Scholar 

  10. Harris SE, Rong Z, Harris MA, et al. Androgen receptor in human prostate carcinoma LNCaP/Adep cells contains a mutation which alters the specificity of the steroid-dependent transcriptional activation region [program and abstracts]. 72nd Annual Meeting of the Endocrine Society, 1990, June 20–23; Atlanta (GA): Endocrine Society, 1990: 93

    Google Scholar 

  11. Montgomery BT, Young CY, Bilhartz DL, et al. Hormonal regulation of prostate-specific antigen (PSA) in the human adenocarcinoma cell line, LNCaP. Prostate 1992; 21: 63–73

    Article  PubMed  CAS  Google Scholar 

  12. Veldscholte J, Ris-Stalpers C, Kuiper GGJM, et al. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun 1990; 17: 534–40

    Article  Google Scholar 

  13. Veldscholte J, Voorhost-Ogink MM, Bolt-de Vries J, et al. Unusual specificity of the androgen receptor in the human prostate tumor cell line LNCaP: high affinity for progestagenic and estrogenic steroids. Biochim Biophys Acta 1990; 1052: 187–94

    Article  PubMed  CAS  Google Scholar 

  14. Veldscholte J, Berrevoets CA, Zegers ND, et al. Hormone-induced dissociation of the androgen receptor-heat-shock protein complex: Use of a new monoclonal antibody to distinguish transformed from nontransformed receptors. Biochemistry 1992; 31: 7422–30

    Article  PubMed  CAS  Google Scholar 

  15. Wilding G, Chen M, Gelmann EP. Aberrant response in vitro of hormone-responsive prostate cancer cells to antiandrogens. Prostate 1989; 14: 103–5

    Article  PubMed  CAS  Google Scholar 

  16. Riegman PH, Vlietstra RJ, van der Korput JA, et al. The promoter of the prostate-specific antigen contains a functional androgen-responsive element. Mol Endocrinol 1991; 5: 1921–30

    Article  PubMed  CAS  Google Scholar 

  17. Cleutjens KB, van der Korput HA, van Eekelen CC, et al. An androgen response element in a far upstream enhancer region is essential for high, androgen-regulated activity of the prostate-specific antigen promoter. Mol Endocrinol 1997; 11: 148–61

    Article  PubMed  CAS  Google Scholar 

  18. Young CYF, Montgomery BT, Andrews PE, et al. Hormonal regulation of prostate-specific antigen messenger RNA in human prostatic adenocarcinoma cell line LNCaP. Cancer Res 1991; 51: 3748–52

    PubMed  CAS  Google Scholar 

  19. Zhao XY, Boyle B, Krishman AV, et al. Two mutations identified in the androgen receptor of the new human prostate cancer cell line MDA PCa 2a. J Urol 1999; 162: 2192–9

    Article  PubMed  CAS  Google Scholar 

  20. Navone NM, Olive M, Ozen M, et al. Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin Cancer Res 1997; 3: 2493–500

    PubMed  CAS  Google Scholar 

  21. Zhao XY, Malloy PJ, Krishman AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med 2000; 6: 703–6

    Article  PubMed  CAS  Google Scholar 

  22. Gaddipati JP, McLeod DG, Heidenberg HB, et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res 1994; 54: 2861–4

    PubMed  CAS  Google Scholar 

  23. Taplin ME, Bubley GJ, Shuster TD, et al. Mutation of the androgen receptor gene in metastatic androgen-independent prostate cancer. New Engl J Med 1995; 332: 1393–8

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki H, Sato N, Watabe Y, et al. Androgen receptor gene mutations in human prostate cancer. J Steroid Biochem Mol Biol 1993; 46: 759–65

    Article  PubMed  CAS  Google Scholar 

  25. Kokontis J, Takakura K, Hay N, et al. Increased androgen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Res 1994; 54: 1566–73

    PubMed  CAS  Google Scholar 

  26. Kokontis JM, Hay N, Liao S. Progression of LNCaP prostate tumor cells during androgen deprivation: hormone-independent growth, repression of proliferation by androgen, and role for p27Kipl in androgen-induced cell cycle arrest. Mol Endocrinol 1998; 12: 941–53

    Article  PubMed  CAS  Google Scholar 

  27. Gao M, Ossowski L, Ferrari AC. Activation of Rb and decline in androgen receptor protein precede retinoic acid-induced apoptosis in androgen-dependent LNCaP cells and their androgen-independent derivative. J Cell Physiol 1999; 179: 336–46

    Article  PubMed  CAS  Google Scholar 

  28. Culig Z, Hoffmann J, Erdel M, et al. Switch from antagonist to agonist of the androgen receptor blocker bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 1999; 81: 242–51

    Article  PubMed  CAS  Google Scholar 

  29. Gregory CW, Johnson RTJ, Mohler JL, et al. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res 2001; 61: 2892–8

    PubMed  CAS  Google Scholar 

  30. Visakorpi T, Hyytinen E, Koivisto P, et al. In vivo amplification of the androgen receptor gene and progression of human prostate cancer. Nat Genet 1995; 9: 401–6

    Article  PubMed  CAS  Google Scholar 

  31. Linja MJ, Savinainen KJ, Saramaki OR, et al. Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001; 61: 3550–5

    PubMed  CAS  Google Scholar 

  32. Culig Z, Klocker H, Eberle J, et al. DNA sequence of the androgen receptor in prostatic tumor cell lines and tissue specimens assessed by means of the polymerase chain reaction. Prostate 1993; 22: 11–22

    Article  PubMed  CAS  Google Scholar 

  33. Castagnaro M, Yandell D, Dockhorn-Dworniczak B, et al. Androgen receptor gene mutations and p53 gene analysis in advanced prostate cancer. Verh Dtsch Ges Pathol 1993; 77: 119–23

    PubMed  CAS  Google Scholar 

  34. Culig Z, Hobisch A, Cronauer MV, et al. Mutant androgen receptor detected in an advanced stage of prostatic carcinoma is activated by adrenal androgens and progesterone. Mol Endocrinol 1993; 7: 1541–50

    Article  PubMed  CAS  Google Scholar 

  35. Elo JP, Kvist L, Leinone K et al. Mutated human androgen receptor gene detected in a prostate cancer patient is also activated by estradiol. J Clin Endocrinol Metab 1995; 80: 3494–500

    Article  PubMed  CAS  Google Scholar 

  36. Newmark JR, Hardy DO, Tonb DC, et al. Androgen receptor gene mutations in human prostate cancer. Proc Natl Acad Sci U S A 1992; 89: 6319–23

    Article  PubMed  CAS  Google Scholar 

  37. Ruizeveld de Winter JA, Janssen PJ, Sleddens HM, et al. Androgen receptor status in localized and locally progressive hormone refractory human prostate cancer. Am J Pathol 1994; 144: 735–46

    PubMed  CAS  Google Scholar 

  38. Evans BAJ, Harper ME, Daniells CE, et al. Low incidence of androgen receptor gene mutations in human prostatic tumors using single strand conformation polymorphism analysis. Prostate 1996; 28: 162–71

    Article  PubMed  CAS  Google Scholar 

  39. Tilley WD, Buchanan G, Hickey TE, et al. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin Cancer Res 1996; 2: 277–85

    PubMed  CAS  Google Scholar 

  40. Marcelli M, Ittmann M, Mariani S, et al. Androgen receptor mutations in prostate cancer. Cancer Res 2000; 60: 944–9

    PubMed  CAS  Google Scholar 

  41. Mononen N, Syrjakoski K, Matikainen M, et al. Two percent of Finnish prostate cancer patients have a germ-line mutation in the hormone-binding domain of the androgen receptor gene. Cancer Res 2000; 60: 6479–81

    PubMed  CAS  Google Scholar 

  42. Kemppainen JA, Lane MV, Sar M, et al. Androgen receptor phosphorylation, turnover, nuclear transport, and transcriptional activation. Specificity for steroids and antihormones. J Biol Chem 1992; 267: 968–74

    PubMed  CAS  Google Scholar 

  43. Yuan S, Trachtenberg J, Mills GB, et al. Androgen-induced inhibition of cell proliferation in an androgen-insensitive prostate cancer cell line (PC-3) transfected with a human androgen receptor complementary DNA. Cancer Res 1993; 53: 1304–11

    PubMed  CAS  Google Scholar 

  44. Tan J, Sharief Y, Hamil KG, et al. Dehydroepiandrosterone activates mutant androgen receptors expressed in the androgen-dependent human prostate cancer xenograft CWR22 and LNCaP cells. Mol Endorinol 1997; 11: 450–9

    Article  CAS  Google Scholar 

  45. Gregory CW, Hamil KG, Kim D, et al. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes. Cancer Res 1998; 58: 5718–24

    PubMed  CAS  Google Scholar 

  46. Peterziel H, Culig Z, Stober J, et al. Mutant androgen receptors in prostatic tumors distinguish between amino-acid-sequence requirements for transactivation and ligand binding. Int J Cancer 1995; 63: 544–50

    Article  PubMed  CAS  Google Scholar 

  47. Wurtz JM, Bourget W, Renaud JP, et al. A canonical structure for the ligand-binding domain of nuclear receptors. Nat Struct Biol 1996; 3: 87–94

    Article  PubMed  CAS  Google Scholar 

  48. Schmitt B, Wilt TJ, Schellhammer PF, et al. Combined androgen blockade with nonsteroidal antiandrogens for advanced prostate cancer: a systemic review. Urology 2001; 57: 727–32

    Article  PubMed  CAS  Google Scholar 

  49. Wong CI, Kelce WR, Sar M, et al. Androgen receptor antagonist versus agonist activities of the fungicide vinclozolin relative to hydroxyflutamide. J Biol Chem 1995; 270: 19998–20003

    Article  PubMed  CAS  Google Scholar 

  50. Belanger A, Giasson M, Couture J, et al. Plasma levels of hydroxy-flutamide in patients with prostatic cancer receiving the combined hormonal therapy: an LHRH agonist and flutamide. Prostate 1988; 12: 79–84

    Article  PubMed  CAS  Google Scholar 

  51. Kennealey GT, Furr BJ. Use of the nonsteroidal anti-androgen Casodex in advanced prostatic carcinoma. Urol Clin North Am 1991; 18: 99–110

    PubMed  CAS  Google Scholar 

  52. Blackledge GR, Cockshott ID, Furr BJ. Casodex (bicalutamide): overview of a new antiandrogen developed for the treatment of prostate cancer. Eur Urol 1997; 31: 30–9

    PubMed  CAS  Google Scholar 

  53. Labrie F, Simard J, Singh SM, et al. Estimated potency of Casodex: a problematic design. Urology 1997; 50: 309–13

    PubMed  CAS  Google Scholar 

  54. Kolvenbag GJ, Furr BJ. Relative potency of bicalutamide (Casodex) and flutamide (Eulexin). Urology 1999; 54: 194–7

    PubMed  CAS  Google Scholar 

  55. Freeman SN, Mainwaring WI, Furr BJ. A possible explanation for the peripheral selectivity of a novel non-steroidal pure antindrogen, Casodex (ICI 176,334). Br J Cancer 1989; 60: 664–8

    Article  PubMed  CAS  Google Scholar 

  56. Taplin ME, Bubley GJ, Ko YJ, et al. Selection for androgen receptor mutations in prostate cancers treated with androgen antagonist. Cancer Res 1999; 59: 2511–15

    PubMed  CAS  Google Scholar 

  57. Scher HI, Kelly WK. Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J Clin Oncol 1993; 11: 1566–72

    PubMed  CAS  Google Scholar 

  58. Small EJ, Carroll PR. Prostate-specific antigen decline after casodex withdrawal: evidence for an antiandrogen withdrawal syndrome. Urology 1994; 43: 408–10

    Article  PubMed  CAS  Google Scholar 

  59. Nieh PT. Withdrawal phenomenon with the antiandrogen casodex. J Urol 1995; 153: 1070–2

    Article  PubMed  CAS  Google Scholar 

  60. Laufer M, Sinibaldi VJ, Carducci MA, et al. Rapid disease progression after the administration of bicalutamide in patients with metastatic prostate cancer. Urology 1999; 54: 745

    Article  PubMed  CAS  Google Scholar 

  61. Dawson NA, McLeod DG. Dramatic prostate specific antigen decrease in response to discontinuation of megestrol acetate in advanced prostate cancer: expansion of the antiandrogen withdrawal syndrome. J Urol 1995; 153:1946–7

    Article  PubMed  CAS  Google Scholar 

  62. Akakura K, Akimoto S, Ohki T, et al. Antiandrogen withdrawal syndrome in prostate cancer after treatment with steroidal antiandrogen chlormadinone acetate. Urology 1995; 45: 700–4

    Article  PubMed  CAS  Google Scholar 

  63. Gomella LG, Ismail M, Nathan FE. Antiandrogen withdrawal syndrome with nilutamide. J Urol 1997; 157: 1366

    Article  PubMed  CAS  Google Scholar 

  64. Sella A, Flex D, Sulkes A, et al. Antiandrogen withdrawal syndrome with cyproterone acetate. Urology 1998; 52: 1091–3

    Article  PubMed  CAS  Google Scholar 

  65. Suzuki H, Akakura K, Komiya A, et al. Codon 877 mutation in the androgen receptor gene in advanced prostate cancer: Relation to antiandrogen withdrawal syndrome. Prostate 1996; 29: 153–8

    Article  PubMed  CAS  Google Scholar 

  66. Culig Z, Hobisch A, Cronauer MV, et al. Androgen receptor activation in prostatic tumor cell lines by insulin-like growth factor-I, keratinocyte growth factor, and epidermal growth factor. Cancer Res 1994; 54: 5474–8

    PubMed  CAS  Google Scholar 

  67. Nazareth LV, Weigel NL Activation of the human androgen receptor through a protein kinase A signaling pathway. J Biol Chem 1996; 271: 19900–7

    Article  PubMed  CAS  Google Scholar 

  68. Hobisch A, Eder IE, Putz T, et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 1998; 58: 4640–5

    PubMed  CAS  Google Scholar 

  69. Sadar MD, Gleave ME. Ligand-independent activation of the androgen receptor by the differentiation agent butyrate in human prostate cancer cells. Cancer Res 2000; 60: 5825–31

    PubMed  CAS  Google Scholar 

  70. Craft N, Shostak Y, Carey M, et al. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat Med 1999; 5: 280–5

    Article  PubMed  CAS  Google Scholar 

  71. Chen T, Wang LH, Farrar WL. Interleukin 6 activates androgen receptor-mediated gene expression through a signal transducer and activator of transcription 3-dependent pathway in LNCaP prostate cancer cells. Cancer Res 2000; 60: 2132–5

    PubMed  CAS  Google Scholar 

  72. Culig Z, Hobisch A, Hittmair A, et al. Synergistic activation of androgen receptor by androgen and luteinizing hormone-releasing hormone in prostatic carcinoma cells. Prostate 1997; 32: 106–14

    Article  PubMed  CAS  Google Scholar 

  73. Darne C, Veyssiere G, Jean C. Phorbol ester causes ligand-independent activation of the androgen receptor. Eur J Biochem 1998; 256: 541–9

    Article  PubMed  CAS  Google Scholar 

  74. Horwitz KB, Sartorius CA, Hovland AR, et al. Surprises with antiprogestins: novel mechanisms of progesterone receptor action. Ciba Found Symp 1995; 191: 235–49

    PubMed  CAS  Google Scholar 

  75. Yeh S, Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A 1996; 93: 5517–21

    Article  PubMed  CAS  Google Scholar 

  76. Yeh S, Miyamoto H, Shima H, et al. From estrogen to androgen receptors: a new pathway for sex hormones in prostate. Proc Natl Acad Sci U S A 1998; 95: 5527–32

    Article  PubMed  CAS  Google Scholar 

  77. Miyamoto H, Yeh S, Wilding G, et al. Promotion of agonist activity of antiandrogens by the androgen receptor coactivator, ARA70, in human prostate cancer DU145 cells. Proc Natl Acad Sci U S A 1998; 95: 7379–84

    Article  PubMed  CAS  Google Scholar 

  78. Alen P, Claessens F, Schoenemakers E, et al. Interaction of the putative androgen receptor-specific coactivator ARA70/ELE1 alpha with multiple steroid receptors and identification of an internally deleted ELE1beta isoform. Mol Endocrinol 1999; 13: 117–28

    Article  PubMed  CAS  Google Scholar 

  79. Gao T, Brantley K, Bolu E, et al. RFG (ARA70, ELE1) interacts with the human androgen receptor in a ligand-dependent fashion, but functions only weakly as a coactivator in cotransfection assays. Mol Endocrinol 1999; 13: 1645–56

    Article  PubMed  CAS  Google Scholar 

  80. Hofman K, Swinnen JV, Claessens F, et al. Apparent coactivation due to interference of expression constructs with nuclear receptor expression. Mol Cell Endocrinol 2000; 168: 21–9

    Article  PubMed  CAS  Google Scholar 

  81. Han G, Foster BA, Mistry S, et al. Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J Biol Chem 2001; 276: 11204–13

    Article  PubMed  CAS  Google Scholar 

  82. Gingrich JR, Barrios RJ, Kattan MW, et al. Androgen-independent prostate cancer progression in the TRAMP model. Cancer Res 1997; 57: 4687–91

    PubMed  CAS  Google Scholar 

  83. Kaplan PJ, Mohan S, Cohen P, et al. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Cancer Res 1999; 59: 2203–9

    PubMed  CAS  Google Scholar 

  84. Raghow S, Kuliyev E, Steakley M, et al. Efficacious chemoprevention of primary prostate cancer by flutamide in an autochthonous transgenic model. Cancer Res 2000; 60: 4093–7

    PubMed  CAS  Google Scholar 

  85. Kang HY, Yeh S, Fujimoto N, et al. Cloning and characterization of human prostate coactivator ARA 54, a novel protein that associates with the androgen receptor. J Biol Chem 1999; 274: 8570–6

    Article  PubMed  CAS  Google Scholar 

  86. Aarnisalo P, Palvimo JJ, Janne OA. CREB binding protein in androgen receptor-mediated signaling. Proc Natl Acad Sci U S A 1998; 95: 2122–7

    Article  PubMed  CAS  Google Scholar 

  87. Fronsdal K, Engedal N, Hagsvold T, et al. CREB binding protein is a coactivator for the androgen receptor and mediates cross-talk with AP-1. J Biol Chem 1988; 273: 31853–9

    Article  Google Scholar 

  88. Tan JA, Hall SH, Petrusz P, et al. Thyroid receptor activator molecule, TRAM-1, is an androgen receptor coactivator. Endocrinology 2000; 141: 3440–50

    Article  PubMed  CAS  Google Scholar 

  89. Lim J, Ghadessy FJ, Abdullah AA, et al. Human androgen receptor mutation disrupts ternary interactions between ligand, receptor domains, and the coactivator TIF2 (transcription intemediary factor 2). Mol Endocrinol 2000; 14: 1187–97

    Article  PubMed  CAS  Google Scholar 

  90. Muller JM, Isele U, Metzger E, et al. FHL2, a novel tissue-specific coactivator of the androgen receptor. EMBO J 2000; 19: 359–69

    Article  PubMed  CAS  Google Scholar 

  91. Bevan CL, Hoare S, Claessens F, et al. The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol 1999; 19: 8383–92

    PubMed  CAS  Google Scholar 

  92. Brady ME, Ozanne DM, Gaughan L, et al. Tip60 is a nuclear hormone receptor coactivator. J Biol Chem 1999; 274: 17599–604.

    Article  PubMed  CAS  Google Scholar 

  93. Gregory CW, He B, Johnson RT, et al. A mechanism for androgen receptor-mediated prostate cancer recurrence after androgen deprivation therapy. Cancer Res 2001; 61: 4315–19

    PubMed  CAS  Google Scholar 

  94. Chen S, Song CS, Lavrovsky Y, et al. Catalytic cleavage of the androgen receptor mRNA and functional inhibition of androgen receptor activity by a hammerhead ribozyme. Mol Endocrinol 1998; 12: 1558–66

    Article  PubMed  CAS  Google Scholar 

  95. Eder IE, Culig Z, Ramoner R, et al. Inhibition of prostate cancer cells by means of androgen receptor antisense oligonucleotides. Cancer Gene Ther 2000; 7: 997–1007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in the authors’ laboratory was supported by the Austrian Research Fund (FWF SFB 002 F203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoran Culig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Culig, Z., Klocker, H., Bartsch, G. et al. Androgen Receptor Mutations in Carcinoma of the Prostate. Am J Pharmacogenomics 1, 241–249 (2001). https://doi.org/10.2165/00129785-200101040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00129785-200101040-00001

Keywords

Navigation