Elsevier

Neoplasia

Volume 12, Issue 9, September 2010, Pages 708-717
Neoplasia

Mutations in the c-Kit Gene Disrupt Mitogen-Activated Protein Kinase Signaling during Tumor Development in Adenoid Cystic Carcinoma of the Salivary Glands1

https://doi.org/10.1593/neo.10356Get rights and content
Under a Creative Commons license
open access

Abstract

The Ras/mitogen-activated protein kinase (MAPK) pathway is considered to be a positive regulator of tumor initiation, progression, and maintenance. This study reports an opposite finding: we have found strong evidence that the MAPK pathway is inhibited in a subset of adenoid cystic carcinomas (ACCs) of the salivary glands. ACC tumors consistently overexpress the receptor tyrosine kinase (RTK) c-Kit, which has been considered a therapeutic target. We performed mutational analysis of the c-Kit gene (KIT in 17 cases of ACC and found that 2 cases of ACC had distinct missense mutations in KIT at both the genomic DNA and messenger RNA levels. These mutations caused G664R and R796G amino acid substitutions in the kinase domains. Surprisingly, the mutations were functionally inactive in cultured cells. We observed a significant reduction of MAPK (ERK1/2) activity in tumor cells, as assessed by immunohistochemistry. We performed further mutational analysis of the downstream effectors in the c-Kit pathway in the genes HRAS, KRAS, NRAS, BRAF, PIK3CA, and PTEN. This analysis revealed that two ACC tumors without KIT mutations had missense mutations in either KRAS or BRAF, causing S17N K-Ras and V590I B-Raf mutants, respectively. Our functional analysis showed that proteins with these mutations were also inactive in cultured cells. This is the first time that MAPK activity from the RTK signaling has been shown to be inhibited by gene mutations during tumor development. Because ACC seems to proliferate despite inactivation of the c-Kit signaling pathway, we suggest that selective inhibition of c-Kit is probably not a suitable treatment strategy for ACC.

Cited by (0)

1

This work was supported by grants from the University of California Cancer Research Coordinating Committee, Hearing Research, Inc, and American Head and Neck Society to O.T. and by grants DE017249-01, U10 CA21661, and 1T32DE019096 from the National Institutes of Health to R.C.K.J.