Skip to main content
Log in

Control of the G2/M transition

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The G2 checkpoint prevents cells from entering mitosis when DNA is damaged, providing an opportunity for repair and stopping the proliferation of damaged cells. Because the G2 checkpoint helps to maintain genomic stability, it is an important focus in understanding the molecular causes of cancer. Many different methods have been used to investigate the G2 checkpoint and uncover some of the underlying mechanisms. Because cell cycle controls are highly conserved, a remarkable synergy between the genetic power of model organisms and biochemical analyses is possible and has uncovered control mechanisms that operate in many diverse species, including humans. CDC2, the cyclin-dependent kinase that normally drives cells into mitosis, is the ultimate target of pathways that mediate rapid arrest in G2 in response to DNA damage. Additional pathways ensure that the arrest is stably maintained. When mammalian cells contain damaged DNA, the p53 tumor suppressor and the Rb family of transcriptional repressors work together to downregulate a large number of genes that encode proteins required for G2 and M. Elimination of these essential cell cycle proteins helps to keep the cells arrested in G2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hartwell, L. H., Culotti, J., Pringle, J. R. and Reid, B. J. (1974) Genetic control of the cell division cycle in yeast. Science 183, 46–51.

    Article  PubMed  CAS  Google Scholar 

  2. Nurse, P., Thuriaux, P. and Nasmyth, K. (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. & Gen. Genet. 146, 167–178.

    Article  CAS  Google Scholar 

  3. Beach, D., Durkacz, B. and Nurse, P. (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300, 706–709.

    Article  PubMed  CAS  Google Scholar 

  4. Nurse, P. and Bissett, Y. (1981) Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292, 558–560.

    Article  PubMed  CAS  Google Scholar 

  5. Nurse, P. and Thuriaux, P. (1980) Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96, 627–637.

    PubMed  CAS  Google Scholar 

  6. Fantes, P. A. (1979) Eplstatic gene interactions in the control of division in fission yeast. Nature, 279, 428–430.

    Article  PubMed  CAS  Google Scholar 

  7. Nurse, P. (1975) Genetic control of cell size at cell division in yeast. Nature, 256, 547–551.

    Article  PubMed  CAS  Google Scholar 

  8. Russell, P. and Nurse, P. (1986) cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153.

    Article  PubMed  CAS  Google Scholar 

  9. Masui, Y. and Markert, C. L. (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J. Exp. Zool., 177, 129–145.

    Article  PubMed  CAS  Google Scholar 

  10. Smith, L. D. and Ecker, R. E. (1971) The interaction of steroids with Rana pipiens oocytes in the induction of maturation. Dev. Biol. 25, 232–247.

    Article  PubMed  CAS  Google Scholar 

  11. Kishimoto, T. and Kanatani, H. (1976) Cytoplasmic factor responsible for germinal vesicle breakdown and meiotic maturation in starfish oocyte. Nature 260, 321–322.

    Article  PubMed  CAS  Google Scholar 

  12. Lohka, M. J. and Masui, Y. (1983) Formation in vitro of sperm pronuclei and mitotic chromosomes induced by amphibian ooplasmic components. Science 220, 719–721.

    Article  PubMed  CAS  Google Scholar 

  13. Lohka, M. J. and Maller, J. L. (1985) Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts. J. Cell Biol. 101, 518–523.

    Article  PubMed  CAS  Google Scholar 

  14. Miake-Lye, R. and Kirschner, M. W. (1985) Induction of early mitotic events in a cell-free system. Cell 41, 165–175.

    Article  PubMed  CAS  Google Scholar 

  15. Lohka, M. J., Hayes, M. K., and Maller, J. L. (1988) Purification of maturation-promoting factor, an intracellular regulator of early mitotic events. Proc. Natl. Acad. Sci. USA 85, 3009–3013.

    Article  PubMed  CAS  Google Scholar 

  16. Labbe, J. C., Lee, M. G., Nurse, P., Picard, A., and Doree, M. (1988) Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+. Nature 335, 251–254.

    Article  PubMed  CAS  Google Scholar 

  17. Gautier, J., Norbury, C., Lohka, M., Nurse, P., and Maller, J. (1988) Purified maturation-promoting factor contains the product of aXenopus homolog of the fission yeast cell cycle control gene cdc2+. Cell 54, 433–439.

    Article  PubMed  CAS  Google Scholar 

  18. Arion, D., Meijer, L., Brizuela, L., and Beach, D. (1988) cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF. Cell 55, 371–378.

    Article  PubMed  CAS  Google Scholar 

  19. Dunphy, W. G., Brizuela, L., Beach, D., and Newport, J. (1988) The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54, 423–431.

    Article  PubMed  CAS  Google Scholar 

  20. Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., and Hunt, T. (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396.

    Article  PubMed  CAS  Google Scholar 

  21. Swenson, K. I., Farrell, K. M., and Ruderman, J. V. (1986) The clam embryo protein cyclin A induces entry into M phase and the resumption of meiosis in Xenopus oocytes. Cell 47, 861–870.

    Article  PubMed  CAS  Google Scholar 

  22. Murray, A. W., Solomon, M. J., and Kirschner, M. W. (1989) The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339, 280–286.

    Article  PubMed  CAS  Google Scholar 

  23. Murray, A. W. and Kirschner, M. W. (1989) Cyclin synthesis drives the early embryonic cell cycle. Nature 339, 275–280.

    Article  PubMed  CAS  Google Scholar 

  24. Gautier, J., Minshull, J., Lohka, M., Glotzer, M., Hunt, T., and Maller, J. L. (1990) Cyclin is a component of maturation-promoting factor from Xenopus, Cell 60, 487–494.

    Article  PubMed  CAS  Google Scholar 

  25. Draetta, G., Luca, F., Westendorf, J., Brizuela, L., Ruderman, J., and Beach, D. (1989) Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF. Cell 56, 829–838.

    Article  PubMed  CAS  Google Scholar 

  26. Hardie, D. G., Matthews, H. R., and Bradbury, E. M. (1976) Cell-cycle dependence of two nuclear histone kinase enzyme activities. Eur. J. Biochem. 66, 37–42.

    Article  PubMed  CAS  Google Scholar 

  27. Meijer, L. and Pondaven, P. (1988) Cyclic activation of histone H1 kinase during sea urchin egg mitotic divisions. Exp. Cell Res. 174, 116–129.

    Article  PubMed  CAS  Google Scholar 

  28. Picard, A., Peaucellier, G., le Bouffant, F., Le Peuch, C., and Doree, M. (1985) Role of protein synthesis and proteases in production and inactivation of maturation-promoting activity during meiotic maturation of starfish oocytes. Dev. Biol. 109, 311–320.

    Article  PubMed  CAS  Google Scholar 

  29. Cicirelli, M. F., Pelech, S. L., and Krebs, E. C. (1988) Activation of multiple protein kinases during the burst in protein phosphorylation that precedes the first mejotic cell division in Xenopus oocytes. J. Biol. Chem. 263, 2009–2019.

    PubMed  CAS  Google Scholar 

  30. Lake, R. S., Goidl, J. A., and Salzman, N. P. (1972) F1-histone modification at metaphase in Chinese hamster cells. Exp. Cell Res. 73, 113–121.

    Article  PubMed  CAS  Google Scholar 

  31. Bradbury, E. M., Inglis, R. J., and Matthews, H. R. (1974) Control of cell division by very lysine rich histone (F1) phosphorylation. Nature 247, 257–261.

    Article  PubMed  CAS  Google Scholar 

  32. Pines, J. (1995) Cyclins and cyclin-dependent kinases: a biochemical view. Biochem. J. 308, 697–711.

    PubMed  CAS  Google Scholar 

  33. Smits, V. A. and Medema, R. H. (2001) Checking out the G(2)/M transition. Biochim. Biophys. Acta 1519, 1–12.

    PubMed  CAS  Google Scholar 

  34. Hagting, A., Karlsson, C., Clute, P., Jackman, M., and Pines, J. (1998) MPF localization is controlled by nuclear export. EMBO J. 17, 4127–4138.

    Article  PubMed  CAS  Google Scholar 

  35. Pines, J. and Hunter, T. (1991) Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J. Cell Biol. 115, 1–17.

    Article  PubMed  CAS  Google Scholar 

  36. Toyoshima, F., Moriguchi, T., Wada, A., Fukuda, M. and Nishida, E. (1998) Nuclear export of cyclin B1 and its possible role in the DNA damage- induced G2 checkpoint. EMBO J. 17, 2728–2735.

    Article  PubMed  CAS  Google Scholar 

  37. Yang, J., Bardes, E. S., Moore, J. D., Brennan, J., Powers, M. A., and Kornbluth, S. (1988) Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes & Dev. 12, 2131–2143.

    Google Scholar 

  38. Moore, J. D., Yang, J., Truant, R., and Kornbluth, S. (1999) Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J. Cell Biol. 144, 213–224.

    Article  PubMed  CAS  Google Scholar 

  39. Takizawa, C. G., Weis, K., and Morgan, D. O. (1999) Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta. Proc. Natl. Acad. Sci. U. S. A. 96 7938–7943.

    Article  PubMed  CAS  Google Scholar 

  40. Toyoshima-Morimoto, F., Taniguchi, E., Shinya, N., Iwamatsu, A., and Nishida, E. (2001) Polo-like kinase 1 phosphorylates cyclin B1 and targets it to the nucleus during prophase. Nature 410, 215–220.

    Article  PubMed  CAS  Google Scholar 

  41. Collyer, T., Hardy, C. F., and Yuan, J. (1999) Cooperative phosphorylation including the activity of polo-like kinase 1 regulates the subcellular localization of cyclin B1. Mol. Cell. Biol. 19, 4270–4278.

    PubMed  Google Scholar 

  42. Borgne, A., Ostvold, A. C., Flament, S., and Meijer, L. (1999) Intra-M phase-promoting factor phosphorylation of cyclin B at the prophase/metaphase transition. J. Biol. Chem. 274, 11977–11986.

    Article  PubMed  CAS  Google Scholar 

  43. Poon, R. Y., Yamashita, K., Adamzewski, J. P., Hunt, T., and Shuttleworth, J. (1993) The cdc2-related protein p40M015 is the catalytic subunit of a protein kinase that can activate p33cdk 2 and p34cdc2. EMBO J. 12, 3123–3132.

    PubMed  CAS  Google Scholar 

  44. Fesquet, D., Labbe, J. C., Derancourt, J., et al. (1993) The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12, 3111–3121.

    PubMed  CAS  Google Scholar 

  45. Booher, R. N., Holman, P. S., and Fattaey, A. (1997) Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J. Biol. Chem. 272, 22300–22306.

    Article  PubMed  CAS  Google Scholar 

  46. Liu, F., Stanton, J. J., Wu, Z., and Piwnica-Worms, H. (1997) The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17, 571–583.

    PubMed  CAS  Google Scholar 

  47. Parker, L. L. and Piwnica-Worms, H. (1992) Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257, 1955–1957.

    Article  PubMed  CAS  Google Scholar 

  48. Gould, K. L. and Nurse, P. (1989) Tyrosine phosphorylation of the fission yeast cdc2+protein kinase regulates entry into mitosis. Nature 342, 39–45.

    Article  PubMed  CAS  Google Scholar 

  49. Amon, A., Surana, U., Muroff, I., and Nasmyth, K. (1992) Regulation of p34CDC28 tyrosine phosphorylation is not required for entry into mitosis in S. cerevisiae. Nature 355, 368–371.

    Article  PubMed  CAS  Google Scholar 

  50. Sorger, P. K. and Murray, A. W. (1992) S-phase feedback control in budding yeast independent of tyrosine phosphorylation of p34cdc28. Nature 355, 365–368.

    Article  PubMed  CAS  Google Scholar 

  51. Draetta, G. and Eckstein, J. (1997) Cdc25 protein phosphatases in cell proliferations. Biochim. Biophys. Acta. 1332, M53-M63.

    PubMed  CAS  Google Scholar 

  52. De Souza, C. P., Ellem, K. A., and Gabrielli, B. G. (2000) Centrosomal and cytoplasmic Cdc2/cyclin B1 activation precedes nuclear mitotic events. Exp. Cell Res. 257, 11–21.

    Article  PubMed  Google Scholar 

  53. Ferguson, A. M., White, L. S., Donovan, P. J. and Piwnica-Worms, H. (2005) Normal cell cycle and checkpoint responses in mice and cells lacking Cdc25B and Cdc25C protein phosphatases. Mol. Cell Biol. 25, 2853–2860.

    Article  PubMed  CAS  Google Scholar 

  54. Maity, A., McKenna, W. G., and Muschel, R. J. (1994) The molecular basis for cell cycle delays following ionizing radiation: a review. Radiotherapy & Oncology 31, 1–13.

    Article  CAS  Google Scholar 

  55. Smith, K. A., Gorman, P. A., Stark, M. B., Groves, R. P., and Stark, G. R. (1990) Distinctive chromosomal structures are formed very early in the amplication of CAD genes in Syrian hamster cells. Cell 63, 1219–1227.

    Article  PubMed  CAS  Google Scholar 

  56. Xu, B., Kim, S. T., Lim, D. S., and Kastan, M. B. (2002) Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol. Cell. Biol. 22, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  57. Van Vugt, M. A., Smits, V. A., Klompmaker, R., and Medema, R. H. (2001) Inhibition of Polo-like kinase-1 by DNA damage occurs in an ATM- or ATR-dependent fashion. J. Biol. Chem. 276, 41656–41660.

    Article  PubMed  Google Scholar 

  58. Taylor, W. R. (2003) FACS-based detection of phosphorylated histone H3 for the quantitation of mitotic cells. In Checkpoint Controls and Cancer: Methods and Protocols (Schonthal A. H., ed). Humana Press, Totowa, NJ.

    Google Scholar 

  59. Weinert, T. A. (1989) The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 246, 629–634.

    Article  PubMed  Google Scholar 

  60. O'Connell, M. J., Walworth, N. C., and Carr, A. M. (2000) The G2-phase DNA-damage checkpoint. Trends Cell Biol. 10, 296–303.

    Article  PubMed  Google Scholar 

  61. Lowndes, N. F. and Murguia, J. R. (2000) Sensing and responding to DNA damage. Curr. Opin. Gen. Dev. 10, 17–25.

    Article  CAS  Google Scholar 

  62. Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Ann. Rev. Genet. 36, 617–656.

    Article  PubMed  CAS  Google Scholar 

  63. Elledge S. J. (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274, 1664–1672.

    Article  PubMed  CAS  Google Scholar 

  64. Lock, R. B. and Ross, W. E. (1990) Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res. 50, 3761–3766.

    PubMed  CAS  Google Scholar 

  65. Kharbanda, S., Saleem, A., Datta, R., Yuan, Z. M., Weichselbaum, R., and Kufe, D. (1994) Ionizing radiation induces rapid tyrosine phosphorylation of p34cdc2. Cancer Res. 54, 1412–1414.

    PubMed  CAS  Google Scholar 

  66. Furnari, B., Rhind, N., and Russell, P. (1997) Cdc25 mitotic inducer targeted by chk 1 DNA damage checkpoint kinase [see comments]. Science 277, 1495–1497.

    Article  PubMed  CAS  Google Scholar 

  67. Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms, H. (1997) Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phasphorylation of Cdc25C on serine-216 [see comments]. Science 277, 1501–1505.

    Article  PubMed  CAS  Google Scholar 

  68. Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S. J. (1997) Conservation of the Chk 1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25 [see comments]. Science 277, 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  69. Walworth, N., Davey, S., and Beach, D. (1993) Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363, 368–371.

    Article  PubMed  CAS  Google Scholar 

  70. Murakami, H. and Okayama, H. (1995) A kinase from fission yeast reponsible for blocking mitosis in S phase. Nature 374, 817–819.

    Article  PubMed  CAS  Google Scholar 

  71. McGowan, C. H. (2002) Checking in on Cds1 (Chk2): a checkpoint kinase and tumor suppressor. Bioessays 24, 502–511.

    Article  PubMed  CAS  Google Scholar 

  72. Chaturvedi, P., Eng, W. K., Zhu, Y., et al. (1999). Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18, 4047–4054.

    Article  PubMed  CAS  Google Scholar 

  73. Liu, Q., Guntuku, S., Cui, X. S., et al. (2000) Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes & Dev. 14, 1448–1459.

    CAS  Google Scholar 

  74. Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y. Tamai, K., and Elledge, S. J. (2000) Ataxia telanglectasia-mutated phosphorylates chk2 in vivo and in vitro [In Process Citation]. Proc. Natl. Acad. Sci. USA 97, 10389–10394.

    Article  PubMed  CAS  Google Scholar 

  75. Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes & Dev. 15, 2177–2196.

    Article  CAS  Google Scholar 

  76. Banin, S., Moyal, L., Shieh, S., t al. (1998) Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281, 1674–1677.

    Article  PubMed  CAS  Google Scholar 

  77. Canman, C. E., Lim, D. S., Cimpric, K. A., et al., (1998) Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281, 1677–1679.

    Article  PubMed  CAS  Google Scholar 

  78. Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B. (1997) DNA damage induces phosphorylation of the amino terminus of p53. Genes & Dev. 11, 3471–3481.

    CAS  Google Scholar 

  79. Cliby, W. A., Roberts, C. J., Cimprich, K. A., Stringer, C. M., Lamb, J. R., Schreiber, S. L., and Friend, S. H. (1998) Overexpression of a kinase-inactive ATR protein causes sensitivity to DNA-damaging agents and defects in cell cycle checkpoint. EMBO J. 17, 159–169.

    Article  PubMed  CAS  Google Scholar 

  80. Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., et al. (1999) A role for ATR in the DNA damageinduced phosphorylation of p53. Genes & Dev. 13, 152–157.

    CAS  Google Scholar 

  81. Savitsky, K., Bar-Shira, A., Gilad, S., et al. (1995) A single ataxia telangiectasia gene with a product simillar to PI-3 kinase. Science 268, 1749–1753

    Article  PubMed  CAS  Google Scholar 

  82. Bulavin, D. V., Higashimoto, Y., Popoff, I. J., et al. (2001) Intiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 411, 102–107.

    Article  PubMed  CAS  Google Scholar 

  83. Baber-Furnari, B. A., Rhind, N., Boddy, M. N., Shanahan, P., Lopez-Girona, A., and Russell, P. (2000) Regulation of mitotic inhibitor Mik 1 helps to enforce the DNA damage checkpoint. Mol. Biol. Cell 11, 1–11.

    PubMed  CAS  Google Scholar 

  84. Michael, W. M. and Newport, J. (1998) Coupling of mitosis to the completion of S phase through Cdc34-mediated degradation of Wee1. Science 282, 1886–1889.

    Article  PubMed  CAS  Google Scholar 

  85. Smits, V. A., Klompmaker, R., Arnaud, L., Rijksen, G., Nigg, E. A., and Medema, R. H. (2000) Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell Biol. 2, 672–676.

    Article  PubMed  CAS  Google Scholar 

  86. Griffiths, D. J., Barbet, N. C., McCready, S., Lehmann, A. R., and Carr, A. M. (1995) Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J. 14, 5812–5923.

    PubMed  CAS  Google Scholar 

  87. Green, C. M., Erdjument-Bromage, H., Tempst, P., and Lowndes, N. F. (2000) A novel Rad24 checkpoint protein complex closely related to replication factor C [erratum appears in Curr Biol 2000 Feb 24;10(4):R171] Curr. Biol. 10, 39–42.

    Article  PubMed  CAS  Google Scholar 

  88. St Onge, R. P., Udell, C. M., Casselman, R., and Davey, S. (1999) The human G2 checkpoint control protein hRAD9 is a nuclear phosphoprotein that forms complexes with hRAD1 and hHUS1. Mol. Biol. Cell 10, 1985–1995.

    Google Scholar 

  89. Lindsey-Boltz, L. A., Bermudez, V. P., Hurwitz, J., and Sancar, A. (2001) Purification and characterization of human DNA damage checkpoint Rad complexes. Proc. Natl. Acad. Sci. USA 98, 11236–11241

    Article  PubMed  CAS  Google Scholar 

  90. Venclovas, C. and Thelen, M. P. (2000) Structurebased predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res. 28, 2481–2493.

    Article  PubMed  CAS  Google Scholar 

  91. Walworth, N. C., and Bernards, R. (1996) rad-dependent response of the chk1-encoded protein kinase at the DNA damage checkpoint. Science 271, 353–356.

    Article  PubMed  CAS  Google Scholar 

  92. Parker, A. E., Van de Weyer, I., Laus, M. C., Oostveen, I., Yon, J., Verhasselt, P., and Luyten, W. H. (1998) A human homologue of the Schizosaccharomyces pombe rad1+checkpoint gene encodes an exonuclease. J. Biol. Chem. 273, 18332–18339.

    Article  PubMed  CAS  Google Scholar 

  93. Miki, Y., Swensen, J., Shattuck-Eidens, D., et al. (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266, 66–71.

    Article  PubMed  CAS  Google Scholar 

  94. Futreal, P. A., Liu, Q., Shattuck-Eidens, D., et al. (1994) BRCA1 mutations in primary breast and ovarian carcinomas. Science 266, 120–122.

    Article  PubMed  CAS  Google Scholar 

  95. Scully, R., Chen, J., Ochs, R. L., Keegan, K., Hoekstra, M., Feunteun, J., and Livingston, D. M. (1997) Dynamic changes of BRCA1 subnuclear location and phosphorylation state are initiated by DNA damage. Cell 90, 425–435.

    Article  PubMed  CAS  Google Scholar 

  96. Wang, Y., Cortez, D., Yazdi, P., Neff, N., Elledge, S. J., and Qin, J. (2000) BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes & Dev. 14, 927–939

    CAS  Google Scholar 

  97. Dolganov, G., Maser, R., Novikov, A., Tosto, L., Chong, S., Bressan, D., and Petrini, J. (1996) Human Rad50 is physically associated with human Mre 11: identification of a conserved multiprotein complex implicated in recombinational DNA repair. Mol. Cell. Biol. 16, 4832–4841.

    PubMed  CAS  Google Scholar 

  98. Maser, R., Monsen, K., Nelms B., and Petrini J. (1997) hMre11 and hRAd50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol. Cell. Biol. 17, 6087–6096.

    PubMed  CAS  Google Scholar 

  99. D'Amours, D. and Jackson, S. (2002) The Mre11 complex: at the crossroads of dna repair and check-point signalling. Nat. Rev. Mol. Cell Biol. 3, 317–327.

    Article  PubMed  CAS  Google Scholar 

  100. Edwards, R. J., Bentley, N. J., and Carr, A. M. (1999) A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat. Cell Biol. 1, 393–398.

    Article  PubMed  CAS  Google Scholar 

  101. Lopez-Girona, A., Tanaka, K., Chen, X. B., Baber, B. A., McGowan, C. H., and Russell, P. (2001) Serine-345 is required for Rad3-dependent phosphorylation and function of checkpoint kinase Chk1 in fission yeast. Proc. Natl. Acad. Sci. USA 98, 11289–11294.

    Article  PubMed  CAS  Google Scholar 

  102. Bakkenist C. and Kastan, M. (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation [In Process Citation]. Nature 421, 499–506.

    Article  PubMed  CAS  Google Scholar 

  103. Schultz, L., Chehab, N., Malikzay, A., and Halazonetis, T. (2000) p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151, 1381–1390.

    Article  PubMed  CAS  Google Scholar 

  104. Wang, B., Matsuoka, S., Carpenter, P., and Elledge, S. (2002) 53S3BP1, a mediator of the DNA damage checkpoint. Science 298, 1435–1438.

    Article  PubMed  CAS  Google Scholar 

  105. Iwabuchi, K., Bartel, P., Li, B., Marraccino, R., and Fields, S. (1994) Two cellular proteins that bind to wild-type but not mutant p53. Proc. Natl. Acad. Sci. USA 91, 6098–6102.

    Article  PubMed  CAS  Google Scholar 

  106. Lee, J. H. and Paull, T. T. (2004) Direct activation of the ATM protein kinase by the Mre 11/Rad50/Nbs1 complex. Science 304, 93–96.

    Article  PubMed  CAS  Google Scholar 

  107. Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman L., and Shiloh, Y. (2003) Requirement of the MRN complex for ATM activation by DNA damage. Embo J 22, 5612–5621.

    Article  PubMed  CAS  Google Scholar 

  108. Falck J., Coates, J., and Jackson, S. P. (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605–611.

    Article  PubMed  CAS  Google Scholar 

  109. Lane, D. P. and Crawford, L. V. (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278, 261–263.

    Article  PubMed  CAS  Google Scholar 

  110. Lane, D. (1984) Cell immortalization and transformation by the p53 gene. Nature 312, 596–597.

    Article  PubMed  CAS  Google Scholar 

  111. Jenkins, J., Rudge, K., and Currie, G. (1984) Cellular immortalization by a cDNA clone encoding the transformation-associated phosphoprotein p53. Nature 312, 651–654.

    Article  PubMed  CAS  Google Scholar 

  112. Parada, L., Land, H., Weinberg, R., Wolf, D., and Rotter, V. (1984) Cooperation between gene encoding p53 tumour antigen and ras in cellular transformation. Nature 312, 649–651.

    Article  PubMed  CAS  Google Scholar 

  113. Eliyahu, D., Raz, A., Gruss, P., Givol, D., and Oren, M. (1984) Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 312, 646–649.

    Article  PubMed  CAS  Google Scholar 

  114. Finlay, C., Hinds, P., Tan, T., Eliyahu, D., Oren, M., and Levine, A. (1988) Activating mutations for transformation by p53 produce a gene product that forms an hsc70-p53 complex with an altered half-life. Mol. Cell. Biol. 8, 531–539.

    PubMed  CAS  Google Scholar 

  115. Fearon, E. and Vogelstein, B. (1990) A genetic model for colorectal tumorigenesis, Cell 61, 759–767.

    Article  PubMed  CAS  Google Scholar 

  116. Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Jr., Butel, J. S., and Bradley, A. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221.

    Article  PubMed  CAS  Google Scholar 

  117. Greenblatt, M. S., Bennett, W. P., Hollstein, M., and Harris, C. C. (1994) Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878

    PubMed  CAS  Google Scholar 

  118. Srivastava, S., Zou, Z., Pirollo, K., Blattner, W., and Chang, E. (1990) Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature 348, 747–749.

    Article  PubMed  CAS  Google Scholar 

  119. Malkin, D., Li, F., Strong, L., et al. (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250, 1233–1238.

    Article  PubMed  CAS  Google Scholar 

  120. Li, F. P. and Fraumeni, J. F. (1969) Rhabdomyosarcoma in children: an epidemiologic study and identification of a familial cancer syndrome. J. Nat. Cancer Inst. 43, 1364–1373.

    Google Scholar 

  121. Ko, L. J., and Prives, C. (1996) p53: puzzle and paradign. Genes & Dev. 10, 1054–1072.

    Article  CAS  Google Scholar 

  122. Vogelstein, B., Lane, D., and Levine, A. J. (2000) Surfing the p53 network. Nature 408, 307–310.

    Article  PubMed  CAS  Google Scholar 

  123. Appella, E., and Anderson, C. W. (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur. J. Biochem. 268, 2764–2772.

    Article  PubMed  CAS  Google Scholar 

  124. Momand, J., Wu, H. H., and Dasgupta, G. (2000) MDM2—master regulator of the p53 tumor suppressor protein. Gene 242, 15–29.

    Article  PubMed  CAS  Google Scholar 

  125. Chehab, N. H., Malikzay, A., Stavridi, E. S., and Halazonetis, T. D. (1999) Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc. Natl. Acad. Sci. USA 96, 13777–13782.

    Article  PubMed  CAS  Google Scholar 

  126. Hirao, A., Kong, Y. Y., Matsuoka, S., et al. (2000) DNA damage induced activation of p53 by the check-point kinase Chk2 [see comments]. Science 287, 1824–1827.

    Article  PubMed  CAS  Google Scholar 

  127. Shieh, S. Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000) The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites [published erratum appears in Genes & Dev. 2000 Mar 15;14(6):750]. Genes & Dev. 14, 289–300.

    CAS  Google Scholar 

  128. Jallepalli, P. V., Lengauer, C., Vogelstein, B., and Bunz, F. (2003) The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J. Biol. Chem. 278, 20475–20579.

    Article  PubMed  CAS  Google Scholar 

  129. Ahn, J., Urist, M., and Prives, C. (2003) Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J. Biol. Chem. 278, 20480–20489.

    Article  PubMed  CAS  Google Scholar 

  130. Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C. (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325–334.

    Article  PubMed  CAS  Google Scholar 

  131. Sakaguchi, K., Herrera, J. E., Saito, S., et al. (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes & Dev. 12, 2831–2841.

    CAS  Google Scholar 

  132. Gu, W. and Roeder, R. G. (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90, 595–606.

    Article  PubMed  CAS  Google Scholar 

  133. Espinosa, J.M. and Emerson, B. M. (2001) Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8, 67–69.

    Article  Google Scholar 

  134. Maltzman W., and Czyzyk, L. (1984) UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4, 1689–1694.

    PubMed  CAS  Google Scholar 

  135. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B., and Craig, R. W. (1991) Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311.

    PubMed  CAS  Google Scholar 

  136. Agarwal, M. L., Agarwal, A., Taylor, W. R., and Stark, G. R. (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. USA 92, 8493–8497.

    Article  PubMed  CAS  Google Scholar 

  137. Taylor, W. R. and Stark, G. R. (2001) Regulation of the G2/M transition by p53. Oncogene 20, 1803–1815.

    Article  PubMed  CAS  Google Scholar 

  138. Stewart, N., Hicks, G. G., Paraskevas, F., and Mowat, M. (1995) Evidence for a second cell cycle block at G2/M by p53. Oncogene 10, 109–115.

    PubMed  CAS  Google Scholar 

  139. Taylor, W. R., DePrimo, S. E., Agarwal, A., Agarwal, M. L., Schonthal, A. H., Katula, K. S., and Stark, G. R. (1999) Mechanisms of G2 arrest in response to overexpression of p53. Mol. Biol. Cell. 10, 3607–3622.

    PubMed  CAS  Google Scholar 

  140. Bunz, F., Dutriaux, A., Lengauer, C., et al. (1998) Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501.

    Article  PubMed  CAS  Google Scholar 

  141. Harper, J. W., Elledge, S. J., Keyomarsi, K., et al.. (1995) Inhibition of cyclin-dependent kinases by p21. Mol. Biol. Cell. 6, 387–400.

    PubMed  CAS  Google Scholar 

  142. Bates, S., Ryan, K. M., Phillips, A. C., and Vousden, K. H. (1998) Cell cycle arrest and DNA endoreduplication following p21 Waf1/Cip1 expression. Oncogene 17, 1691–1703.

    Article  PubMed  CAS  Google Scholar 

  143. Medema, R. H., Klompmaker, R., Smits, V. A., and Rijksen, G. (1998) P21 wafl can block cells at two points in the cell cycle, but does not interfere with processive DNA-replication or stress-activated kinases. Oncogene 16, 431–441.

    Article  PubMed  CAS  Google Scholar 

  144. Niculescu, A. B., 3rd, Chen, X., Smeets, M., Hengst, L., Prives, C., and Reed, S. I. (1998) Effects of p21(Cipl/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication [published erratum appears in Mol. Cell Biol. 1998 Mar; 18(3):1763]. Mol. Cell. Biol. 18, 629–643.

    PubMed  CAS  Google Scholar 

  145. Smits, V. A., Klompmaker, R., Vallenius, T., Rijksen, G., Makela, T. P., and Medema, R. H. (2000) p2T inhibits thr161 phosphorylation of cdc2 to enforce the G2 DNA damage checkpoint [In Process Citation]. J. Biol. Chem. 275, 30638–30643.

    Article  PubMed  CAS  Google Scholar 

  146. Baus, F., Gire, V., Fisher, D., Piette, J., and Dulic, V. (2003) Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts. EMBO J. 22, 3992–4002.

    Article  PubMed  CAS  Google Scholar 

  147. Jin, S., Antinore, M. J., Lung, F. D., et al. (2000) The GADD45 inhibition of Cdc2 kinase correlates with GADD45-mediated growth suppression. J. Biol. Chem. 275, 16602–16608.

    Article  PubMed  CAS  Google Scholar 

  148. Zhan, Q., Antinore, M. J., Wang, X. W., Carrier, F., Smith, M. L., Harris, C. C., and Fornace, A. J., Jr. (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18, 2892–2900.

    Article  PubMed  CAS  Google Scholar 

  149. Wang, X. W., Zhan, Q., Coursen, J. D., et al. (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 96, 3706–3711.

    Article  PubMed  CAS  Google Scholar 

  150. Hermeking, H., Lengauer, C., Polyak, K., et al., (1997) 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11.

    Article  PubMed  CAS  Google Scholar 

  151. Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage [see comments]. Nature 401, 616–620.

    Article  PubMed  CAS  Google Scholar 

  152. Chan, T. A., Hwang, P. M., Hermeking, H., Kinzler, K. W., and Vogelstein, B. (2000) Cooperative effects of genes controlling the G(2)/M checkpoint. Genes & Dev. 14, 1584–1588.

    CAS  Google Scholar 

  153. Innocente, S. A., Abrahamson, J. L., Cogswell, J. P., and Lee, J. M. (1999) p53 regulates a G2 checkpoint through cyclin B1. Proc. Natl. Acad. Sci. USA 96, 2147–2152.

    Article  PubMed  CAS  Google Scholar 

  154. Lau, C. C. and Pardee, A. B. (1982) Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc. Natl. Acad. Sci. U. S. A. 79, 2942–2946.

    Article  PubMed  CAS  Google Scholar 

  155. Fan, S., Smith, M. L., Rivet, D. J., 2nd, et al. (1995) Disruption of p53 function sensitizes breast cancer MCF-7 cells to cisplatin and pentoxifylline. Cancer Res. 55, 1649–1654.

    PubMed  CAS  Google Scholar 

  156. Clifford, B., Beljin, M., Stark, G. R., and Taylor, W. R. (2003) G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res. 63, 4074–4081.

    PubMed  CAS  Google Scholar 

  157. Blasina, A., Price, B. D., Turenne, G. A., and McGowan, C. H. (1999) Caffeine inhibits the checkpoint kinase ATM. Curr. Biol. 9, 1135–1138.

    Article  PubMed  CAS  Google Scholar 

  158. Sarkaria, J. N., Busby, E. C., Tibbetts, R. S., Roos, P., Taya, Y., Karnitz, L. M., and Abraham, R. T. (1999) Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, Caffeine. Cancer Res. 59, 4375–4382.

    PubMed  CAS  Google Scholar 

  159. Zhou, B. B., Chaturvedi, P., Spring, K., et al. (2000) Caffeine abolishes the mammalian (G(2)/M (DNA damage checkpoint by inhibiting ataxia-telangiecta-sia-mutated kinase activity. J. Biol. Chem. 275, 10342–10348.

    Article  PubMed  CAS  Google Scholar 

  160. Kanda, T., Sullivan, K. F., and Wahl, G. M. (1998) Histone-GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385.

    Article  PubMed  CAS  Google Scholar 

  161. Taylor, W. R., Schonthal, A. H., Galante, J., and Stark, G. R. (2001) p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J. Biol. Chem. 276, 1998–2006.

    Article  PubMed  CAS  Google Scholar 

  162. Sugarman, J. L., Schonthal, A. H., and Glass, C. K. (1995) Identification of a cell-type-specific and E2F-independent mechanism for repression of cdc2 transcription. Mol. Cell. Biol. 15, 3282–3290.

    PubMed  CAS  Google Scholar 

  163. Zwicker, J., Lucibello, F. C., Wolfraim, L. A., Gross, C., Truss, M., Engeland, K., and Muller, R. (1995) Cell cycle regulation of the cyclin A, cdc25C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J. 14, 4514–4522.

    PubMed  CAS  Google Scholar 

  164. Tommasi, S. and Pfeifer, G. P. (1995) In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol. Cell. Biol. 15, 6901–6913.

    PubMed  CAS  Google Scholar 

  165. Kovesdi, I., Reichel, R., and Nevins, J. R. (1987) Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. Proc. Natl. Acad. Sci. USA 84, 2180–2184.

    Article  PubMed  CAS  Google Scholar 

  166. Trimarchi, J. M., and Lees, J. A. (2002) Sibling rivalry in the E2F family. Nat. Rev. Mol. Cell Biol. 3, 11–20.

    Article  PubMed  CAS  Google Scholar 

  167. Maiti, B., Li, J., de Bruin, C., et al. (2005) Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 280, 18211–18220.

    Article  PubMed  CAS  Google Scholar 

  168. de Bruin, A., Maiti, B., Jakoi, L., Timmers, C., Buerki, R., and Leone, G. (2003) Identification and characterization of E2F7, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 278, 42041–42049.

    Article  PubMed  CAS  Google Scholar 

  169. Di Stefano, L., Jensen, M. R., and Helin, K. (2003) E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated gene. EMBO J. 22, 6289–6298.

    Article  PubMed  Google Scholar 

  170. Friend, S. H., Bernards, R., Rogelj, S., Weinberg, R. A., Rapaport, J. M., Albert, D. M., and Dryja, T. P. (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323, 643–646.

    Article  PubMed  CAS  Google Scholar 

  171. Harbour, J. W. and Dean, D. C. (2000) Rb function in cell-cycle regulation and apoptosis. Nat. Cell. Biol. 2, E65-E67.

    Article  PubMed  CAS  Google Scholar 

  172. Lipinski, M. M. and Jacks, T. (1999) The retinoblastoma gene family in differentiation and development. Oncogene 18, 7873–7882.

    Article  PubMed  CAS  Google Scholar 

  173. Flatt, P. M., Tang, L. J., Scatena, C. D., Szak, S. T., and Pietenpol, J. A. (2000) p53 regulation of G(2) checkpoint is retinoblastoma protein dependent. Mol. Cell. Biol. 20, 4210–4223.

    Article  PubMed  CAS  Google Scholar 

  174. Polager, S. and Ginsberg, D. (2003) E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J. Biol. Chem. 278, 1443–1449.

    Article  PubMed  CAS  Google Scholar 

  175. Jackson, M. W., Agarwal, M. K., Yang, J., et al. (2005) P130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. J. Cell Sci. 118, 1821–1832

    Article  PubMed  CAS  Google Scholar 

  176. Dou, Q P., Zhao, S., Levin, A. H., Wang, J., Helin, K., and Pardee, A. B. (1994) G1/S-regulated E2F-containing protein complexes bind to the mouse thymidine kinase gene promoter. J. Biol. Chem. 269, 1306–1313.

    PubMed  CAS  Google Scholar 

  177. Ishida, S., Huang, E., Zuzan, H., Spang, R., Leone, G., West, M., and Nevins, J. R. (2001) Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol. Cell. Biol. 21, 4684–4699.

    Article  PubMed  CAS  Google Scholar 

  178. Polager, S., Kalma, Y., Berkovich, E., and Ginsberg, D. (2002) E2Fs up-regulate expression of genes involved in DNA replication, DNA repair and mitosis. Oncogene 21, 437–446.

    Article  PubMed  CAS  Google Scholar 

  179. Ren, B., Cam, H., Takahashi, Y., Volkert, T., Terragni, J., Young, R. A., and Dynlacht, B. D. (2002) E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes & Dev. 16, 245–256.

    Article  CAS  Google Scholar 

  180. Chang, B. D., Broude, E. V., Fang, J. V. K. T., Abdryashitov, R., Poole, J. C., and Roninson, I. B. (2000) p21 Waf1/Cip1/Sdi1-induced growth arrest is associated with depletion of mitosis-control proteins and leads to abnormal mitosis and endoreduplication in recovering cells. Oncogene 19, 2165–2170.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, G.R., Taylor, W.R. Control of the G2/M transition. Mol Biotechnol 32, 227–248 (2006). https://doi.org/10.1385/MB:32:3:227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/MB:32:3:227

Index Entries

Navigation