Skip to main content
Log in

Molecular epidemiology of pancreatic cancer

  • Review Article
  • Published:
International Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Currently there is no early diagnostic test and no effective treatment options for this deadly disease. Prevention of pancreatic cancer is difficult because little is known about its etiology. The main modifiable risk factors for pancreatic cancer include cigarette smoking and dietary factors. Information from molecular epidemiological study of pancreatic cancer is very limited. DNA adducts derived from exposure to polycyclic aromatic hydrocarbon, aromatic amines, and heterocyclic amines have been detected in human pancreatic tissues. DNA damages derived from oxidative stress and lipid peroxidation are also present in pancreas. No study has demonstrated a main effect of carcinogen-metabolizing genes and DNA repair genes on the risk of pancreatic cancer thus far. However, significant effects of these genes have been observed among individuals with known carcinogen exposure, such as smoking. A number of environmental and lifestyle factors, such as smoking, alcohol, coffee consumption, and exposure to organochlorine or hydrocarbon solvent, have been associated with the frequency and spectrum of K-ras mutation in pancreatic tumors. Dietary folate intake and serum levels of folate have been associated with the risk of pancreatic cancer among male smokers. These findings demonstrate the potential of the molecular epidemiology approach in understanding the etiology of pancreatic cancer. Further efforts should be made to understand the interactive relationship between genetic and environmental factors in the etiology of pancreatic cancer, which will in turn be important in identifying the high-risk population for the primary prevention of this deadly disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American Cancer Society, Cancer Figures and Facts 2002, Atlanta: American Cancer Society, 2002, p. 10.

    Google Scholar 

  2. National Cancer Institute. http://seer.cancer.gov/csr/1973_1999/pancreas.pdf; p. 5.

  3. Anderson KE, Potter JD, Mack TM. Pancreatic Cancer. In: Cancer Epidemiology and Prevention. (Schottenfeld D and Fraumeni JF Jr, ed.) Oxford University Press, 1996; pp. 725–771.

  4. Gold EB, Goldin SB. Epidemiology of and risk factors for pancreatic cancer. Surg Oncol Clin N Am 1998;7:67–91.

    PubMed  CAS  Google Scholar 

  5. Chappuis PO, Ghadirian P, Foulkes WD. The role of genetic factors in the etiology of pancreatic adenocarcinoma: an update. Cancer Invest 2001;19:65–75.

    Article  PubMed  CAS  Google Scholar 

  6. Lowenfels AB, Maisonneuve P, DiMagno EP, Elitsur Y, Gates LK Jr, Perrault J, Whitcomb DC. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J Natl Cancer Inst 1997;89:442–446.

    Article  PubMed  CAS  Google Scholar 

  7. Park JG, Park YJ, Wijnen JT, Vasen HF. Gene-environment interaction in hereditary nonpolyposis colorectal cancer with implications for diagnosis and genetic testing. Int J Cancer 1999;82:516–519.

    Article  PubMed  CAS  Google Scholar 

  8. Goggins M, Schutte M, Lu J, et al. Germiline BRCA2 gene mutations in patients with apparently sporadic pancreatic carcinomas. Cancer Res 1996;56:5360–5364.

    PubMed  CAS  Google Scholar 

  9. Lal G, Liu G, Schmocker B, et al. Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res 2000;60:409–416.

    PubMed  CAS  Google Scholar 

  10. Bansal P, Sonnenberg A. pancreatitis is a risk factor for pancreatic cancer. Gastroenterology 1995;109:247–251.

    Article  PubMed  CAS  Google Scholar 

  11. Everhart J, Wright D. Diabetes mellitus as a risk factor for pancreatic cancer: A meta-analysis. JAMA 1995;273:1605–1609.

    Article  PubMed  CAS  Google Scholar 

  12. Simon B, Printz H. Epidemiological trends in pancreatic neoplasias. Digest Dis 2001;19:6–14.

    Article  CAS  Google Scholar 

  13. Bueno de Mesquita HB, Maisonneuve P, Moerman CJ, Walker AM. Aspects of medical history and exocrine carcinoma of the pancreas: A population-based case-control study in the Netherland. Int J Cancer 1992;52:17–23.

    Article  PubMed  CAS  Google Scholar 

  14. La Vecchia C, Negri E, D’Avanzo B, et al. Medical history, diet and pancreatic cancer. Oncology 1990;47:463–466.

    Article  PubMed  Google Scholar 

  15. Ahlgren JD. Epidemiology and risk factors in pancreatic cancer. Sem Oncol 1996;23:241–250.

    CAS  Google Scholar 

  16. Mack TM, Yu MC, Hanisch R, Henderson BE. Pancreas cancer and smoking, beverage consumption, and past medical history. J Natl Cancer Inst 1986;76:49–60.

    PubMed  CAS  Google Scholar 

  17. Silverman DT, Dunn JA, Hoover RN, Schiffman M, Lillemoe KD, Schoenberg JB, Brown LM, Greenberg RS, Hayes RB, Swanson GM. Cigarette smoking and pancreas cancer: A case-control study based on direct interview. J Natl Cancer Inst 1994;86:1510–1516.

    Article  PubMed  CAS  Google Scholar 

  18. Muscat JE, Stellman SD, Hoffmann D, Wynder EL. Smoking and pancreatic cancer in men and women. Cancer Epidemiol Biomark Prev 1997;6:15–19.

    CAS  Google Scholar 

  19. Fuchs CS, Colditz GA, Stampfer MJ, et al. A prospective study of cigarette smoking and the risk of pancreatic cancer. Arch Intern Med 1996;156:2255–2260.

    Article  PubMed  CAS  Google Scholar 

  20. Boyle P, Maisonneuve P, Bueno de Mesquita B, et al. Cigarette smoking and pancreatic cancer: a case control study for the search programme of IARC. Int. J Cancer 1996;67:63–71.

    Article  PubMed  CAS  Google Scholar 

  21. Stolzenberg-Solomon RZ, Pietinen P, Barrett MJ, Taylor PR, Virtamo J, Albanes D. Dietary and other methyl-group availability factors and pancreatic cancer risk in a cohort of male smokers. Am J Epidemiol 2001;153:680–687.

    Article  PubMed  CAS  Google Scholar 

  22. Stolzenberg-Solomon RZ, Albanes D, Nieto FJ, et al. Pancreatic cancer risk and nutrition-related methyl-group availability indicators in male smokers. J Natl Cancer Inst 1999;91:535–541.

    Article  PubMed  CAS  Google Scholar 

  23. Leklem JE. Vitamin B6. in: Modern nutrition in health and disease. (Shils ME, Olson JA, Shike M, eds.) Lea & Febiger; Philadelphia 1994; pp. 383–401.

    Google Scholar 

  24. Ji BT, Chow WH, Gridley G, et al. Dietary factors and the risk of pancreatic cancer: A case-control study in Shanghai, China. Cancer Epidemiol Biomark Prev 1995;4:885–893.

    CAS  Google Scholar 

  25. Ghadirian P, Baillargeon J, Simard A, Perret C. Food habits and pancreatic cancer: A case-control study of the Francophone Community in Montreal, Canada. Cancer Epidemiol Biomark Prev 1995;4:895–899.

    CAS  Google Scholar 

  26. Knekt P, Steineck G, Jarvinen R, Hakulinen T, Aromaa A. Intake of fried meat and risk of cancer: A follow-up study in Finland. Int J Cancer 1994;59:756–760.

    Article  PubMed  CAS  Google Scholar 

  27. Ohba S, Nishi M, Miyake H. Eating habits and pancreatic cancer. Int J Pancreatal 1996;20:37–42.

    CAS  Google Scholar 

  28. Anderson K, Sinha R, Kulldorff M, et al. Meat intake and cooking techniques: associations with pancreatic cancer. Mutat Res 2002;506–507(C):225–231.

    PubMed  Google Scholar 

  29. IARC. Alcohol drinking. IARC Working Group. Lyon, France.

  30. IARC. Coffee, tea, mate methylxanthines, and methylglyoxal. IARC Monograph evaluation of carcinogenic risks in humans. Lyon, France, IARC, 1991.

    Google Scholar 

  31. Porta M, Malats N, Guarner L, et al. Association between coffee drinking and K-ras mutations in exocrine pancreatic cancer. PANKRAS II Study Group. J Epidemiol Community Health 1999;53:702–709.

    Article  PubMed  CAS  Google Scholar 

  32. Norell S, Ahlbom A, Olin R, et al. Occupational Factors and Pancreatic Cancer. Brit J Industr Med 1986;43:775–778.

    PubMed  CAS  Google Scholar 

  33. Kauppinen T, Partanen T, Degerth R, Ojajarvi A. Pancreatic cancer and occupational exposures. Epidemiology 1995;6:498–502.

    Article  PubMed  CAS  Google Scholar 

  34. Park RM, Mirer FE. A survey of mortality at two automotive engine manufacturing plants. Am J Industr Med 1996;30:664–673.

    Article  CAS  Google Scholar 

  35. Bardin JA, Eisen EA, Tolbert PE, Hallock MF, Hammond SK, Woskie SR, Smith TJ, Monson RR. Mortality studies of machining fluid exposure in the automobile industry. V: A case-control study of pancreatic cancer. Am J Industr Med 1997;32:240–247.

    Article  CAS  Google Scholar 

  36. Garabrant DH, Held J, Langholz B, Peters JM, Mack TM. DDT and related compounds and risk of pancreatic cancer. J Natl Cancer Inst 1992;84:764–771.

    Article  PubMed  CAS  Google Scholar 

  37. Fryzek JP, Garabrant DH, Harlow SD, et al. A case-control study of self-reported exposures to pesticides and pancreas cancer in Southern Michigan. Int J Cancer 1997;72:62–67.

    Article  PubMed  CAS  Google Scholar 

  38. Hanley AJ, Johnson KC, Villeneuve PJ, Mao Y. Canadian Cancer Registries Epidemiology Research Group. Physical activity, anthropometric factors and risk of pancreatic cancer: results from the Canadian enhanced cancer surveillance system. Int J Cancer 2001;94:140–147.

    Article  PubMed  CAS  Google Scholar 

  39. Bartsch H, Rojas M, Nair U, Nair J, Alexandrov K. Genetic cancer susceptibility and DNA adducts: studies in smokers, tobacco chewers, and cokeoven workers. Cancer Detect Prev 1999;23:445–453.

    Article  PubMed  CAS  Google Scholar 

  40. Shields PG, Harris CC. Molecular epidemiology and the genetics of environmental cancer. J Am Med Assoc 1991;266:681–687.

    Article  CAS  Google Scholar 

  41. Perera PP. Molecular epidemiology: Insights into cancer susceptibility, risk assessment, and prevention. J Natl Cancer Inst 1996;88:496–509.

    Article  PubMed  CAS  Google Scholar 

  42. Wei Q, Spitz MR. The role of DNA repair capacity in susceptibility to lung cancer: a review. Cancer Metast Rev 1997;16:295–307.

    Article  CAS  Google Scholar 

  43. Berwick M and Vineis P. Markers of DNA repair and susceptibility to cancer in humans: an epidemiologic review. J Natl Cancer Inst 2000;92:874–897.

    Article  PubMed  CAS  Google Scholar 

  44. Nair U, Bartsch H. Metabolic polymorphisms as susceptibility markers for lung and oral cavity cancer. IARC Scientific Publications 2001;154:271–290.

    PubMed  CAS  Google Scholar 

  45. Greenblatt MS, Bennett WP, Hollstein M, Harris CC. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res 1994;54:4855–4878.

    PubMed  CAS  Google Scholar 

  46. Hussain SP, Harris CC. Molecular epidemiology of human cancer: contribution of mutation spectra studies of tumor suppressor genes. Cancer Res 1998;58:4023–4037.

    PubMed  CAS  Google Scholar 

  47. Cuzick J, Routledge MN, Jenkins D, Garner RC. DNA adducts in different tissues of smokers and non-smokers. Int J Cancer 1990;45:673–678.

    Article  PubMed  CAS  Google Scholar 

  48. Anderson KE, Hammons GJ, Kadlubar FF, et al. Metabolic activation of aromatic amines by human pancreas. Carcinogenesis 1997;18:1085–1092.

    Article  PubMed  CAS  Google Scholar 

  49. Wang M, Abbruzzese JL, Friess H, et al. DNA adducts in human pancreatic tissues and their potential role in carcinogenesis. Cancer Res 1998;58:38–41.

    PubMed  CAS  Google Scholar 

  50. Prokopczyk B, Hoffmann D, Bologna M, et al. Identification of tobacco-derived compounds in human pancreatic juice. Chem Res Toxicol 2002;15:677–685.

    Article  PubMed  CAS  Google Scholar 

  51. Pour PM, Tomioka T. Tumours of the pancreas. IARC Scientific Publications. 1996;126:149–173.

    PubMed  Google Scholar 

  52. Li D, Firozi PF, Zhang WQ, et al. DNA Adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer. Mutat Res 2002;513:37–48.

    PubMed  CAS  Google Scholar 

  53. Sinha R, Rothman N. Role of well-done, grilled red meat, heterocyclic amines (HCAs) in the etiology of human cancer. Cancer Lett 1999;143:189–194.

    Article  PubMed  CAS  Google Scholar 

  54. Augustsson K, Skog K, Jagerstad M, Steineck G. Assessment of the human exposure to heterocyclic amines. Carcinogenesis 1997;18:1931–1935.

    Article  PubMed  CAS  Google Scholar 

  55. Maric RN. Cheng KK. Meat intake, heterocyclic amines, and colon cancer. Am J Gastroenterology 2000;95:3683–3684.

    Article  CAS  Google Scholar 

  56. Sinha R, Kulldorff M, Swanson CA, Curtin J, Brownson RC, Alavanja MC. Dietary heterocyclic amines and the risk of lung cancer among Missouri women. Cancer Res 2000;60:3753–3756.

    PubMed  CAS  Google Scholar 

  57. Zheng W, Gustafson DR, Sinha R, et al. Well-done meat intake and the risk of breast cancer. J Natl Cancer Inst 1998;90:1724–1729.

    Article  PubMed  CAS  Google Scholar 

  58. Sinha R, Gustafson DR, Kulldorff M, Wen WQ, Cerhan JR, Zheng W. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, a carcinogen in high-temperature-cooked meat, and breast cancer risk. J Natl Cancer Inst 2000;92:1352–1354.

    Article  PubMed  CAS  Google Scholar 

  59. Yoshimoto M, Tsutsumi M, Iki K, et al. Carcinogenicity of heterocyclic amines for the pancreatic duct epithelium in hamsters. Cancer Lett 1999;143:235–239.

    Article  PubMed  CAS  Google Scholar 

  60. Hirose M, Yamaguchi T, Lin C, et al. Effects of arctiin on PhIP-induced mammary, colon and pancreatic carcinogenesis in female Sprague-Dawley rats and MeIQx-induced hepatocarcinogenesis in male F344 rats. Cancer Lett 2000;155:79–88.

    Article  PubMed  CAS  Google Scholar 

  61. Butcher NJ, Minchin RF, Kadlubar FF and Ilett KF. Uptake of the food-derived heterocyclic amine carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and its N-hydroxy metabolite into rat pancreatic acini and hepatocytes in vitro. Carcinogenesis 1996;17:889–892.

    Article  PubMed  CAS  Google Scholar 

  62. Weiderpass E, Partanen T, Kaaks R, et al. Occurrence, trends, and environmental etiology of pancreatic cancer. Scan J Work Environ Health 1998;24:165–174.

    CAS  Google Scholar 

  63. Garabrant DH, Held J, Langholz B, Peters JM, and Mack TM. DDT and related compounds and risk of pancreatic cancer. J Natl Cancer Inst 1992;84:764–771.

    Article  PubMed  CAS  Google Scholar 

  64. Hoppin JA, Tolbert PE, Holly EA, et al. Pancreatic cancer and serum organochlorine levels. Cancer Epidemiol Biomarkers Prev 2000;9:199–205.

    PubMed  CAS  Google Scholar 

  65. Schwartz GG and Reis IM. Is cadmium a cause of human pancreatic cancer? Cancer Epidemiol Biomark Prev 2000;9:139–145.

    CAS  Google Scholar 

  66. Ames BN, Shigenaga MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 1993;90:7915–7922.

    Article  PubMed  CAS  Google Scholar 

  67. Guyton KZ, Kensler TW. Oxidative mechanisms in carcinogenesis. Br Med Bull 1993;49:523–544.

    PubMed  CAS  Google Scholar 

  68. Rau B, Poch B, Gansauge F, et al. Pathophysiologic role of oxygen free radicals in acute pancreatitis: initiating event or mediator of tissue damage?. Ann Surg 2000;231:352–360.

    Article  PubMed  CAS  Google Scholar 

  69. Schoenberg MH, Buchler M, Pietrzyk C, et al. Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas 1995;10:36–43.

    Article  PubMed  CAS  Google Scholar 

  70. Wereszcynska-Siemiatkowska, Dabrowski A, Jedynak M, Gabryelewicz A. Oxidative stress as an early prognostic factor in acute pancreatitis (AP): Its correlation with serum phospholipase A2 (PLA2) and plasma polymorphonuclear elastase (PMN-E) in different-severity forms of human AP. Pancreas 1998;17:163–168.

    Article  Google Scholar 

  71. Thompson PA, Seyedi F, Lang NP, et al. Comparison of DNA adduct levels associated with exogenous and endogenous exposures in human pancreas in relation to metabolic genotype. Mutat Res 1999;424:263–274.

    PubMed  CAS  Google Scholar 

  72. Kadlubar FF, Anderson KE, Haussermann S, et al. Comparison of DNA adduct levels associated with oxidative stress in human pancreas. Mutat Res 1998;405:125–133.

    PubMed  CAS  Google Scholar 

  73. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res 1999;424:83–95.

    PubMed  CAS  Google Scholar 

  74. Nair U, Bartsch H. Metabolic polymorphisms as susceptibility markers for lung and oral cavity cancer. IARC Scientific Publications. 2001;154:271–290.

    PubMed  CAS  Google Scholar 

  75. Indulski JA, Lutz W. Metabolic genotype in relation to individual susceptibility to environmental carcinogens. Int Arch Occup Environ Health 2000;73:71–85.

    Article  PubMed  CAS  Google Scholar 

  76. Lee HC, Yoon YB, Kim CY. Association between genetic polymorphisms of the cytochromes P-450 (1A1, 2D6, and 2E1) and the susceptibility to pancreatic cancer. Korean J Intern Med 1997;12:128–136.

    PubMed  CAS  Google Scholar 

  77. Liu G, Ghadirian P, Vesprini D, et al. Polymorphisms in GSTM1, GSTT1 and CYP1A1 and risk of pancreatic adenocarcinoma. Brit J Cancer 2000;82:1646–1649.

    Article  PubMed  CAS  Google Scholar 

  78. Bartsch H, Malaveille C, Lowenfels AB, Maisonneuve P, Hautefeuille A, Boyle P. Genetic polymorphism of N-acetyltransferases, glutathione S-transferase M1 and NAD(P)H:quinone oxidoreductase in relation to malignant and benign pancreatic disease risk. The International Pancreatic Disease Study Group. Eur J Cancer Prev 1998;7:215–223.

    Article  PubMed  CAS  Google Scholar 

  79. Duell EJ, Holly EA, Bracci PM, Liu M, Wiencke JK, Kelsey KT. A population-based, case-control study of polymorphisms in carcinogen-metabolizing genes, smoking, and pancreatic adenocarcinoma risk. J Natl Cancer Inst. 2002;94:297–306.

    PubMed  CAS  Google Scholar 

  80. Hein DW. N-Acetyltransferae genetics and their role in predisposition to aromatic and heterocyclic amine-induced carcinogenesis. Toxicol Lett 2000;112–113:349–356.

    Article  PubMed  Google Scholar 

  81. Hirvonen A. Chapter 20. Polymorphic NATs and cancer predisposition. IARC Scientific Publications (Lyon) 1999;148:251–270.

    CAS  Google Scholar 

  82. Hein DW. Doll MA. Fretland AJ. Leff MA. Webb SJ. Xiao GH. Devanaboyina US. Nangju NA. Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomark Prev 2000;9:29–42.

    CAS  Google Scholar 

  83. Duell EJ, Holly EA, Bracci PM, Wiencke JK, Kelsey KT. A population-based study of the Arg399Gln polymorphism in X-Ray repair cross- complementing group 1 (XRCC1) and risk of pancreatic adenocarcinoma. Cancer Res 2002;62:4630–4636.

    PubMed  CAS  Google Scholar 

  84. Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA. XRCC1 polymorphisms: effects on aflotoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res. 1999;59:2557–2561.

    PubMed  CAS  Google Scholar 

  85. Abdel-Rahman SZ, El-Zein RA. The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK. Cancer Lett 2000;159:63–71.

    Article  PubMed  CAS  Google Scholar 

  86. Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis 2001;22:917–922.

    Article  PubMed  CAS  Google Scholar 

  87. Divine K, Gilliland F, Crowell R, et al. The XRCC1 399 glutamine allele is a risk factor for adenocarcinoma of the lung. Mutat. Res 2001;461:273–278.

    PubMed  CAS  Google Scholar 

  88. Sturgis EM, Castillo EJ, Li L, et al. Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck. Carcinogenesis 1999;20:2125–2129.

    Article  PubMed  CAS  Google Scholar 

  89. Pegg AE. Methylation of the O6-position of guanine in DNA is the most likely initiating event in carcinogenesis by methylating agents. Cancer Invest 1984;2:223–231.

    Article  PubMed  CAS  Google Scholar 

  90. Deng C, Xie D, Capasso H, Zhao Y, Wang L, and Hong JY. Genetic polymorphism of human O6-alkylguanine-DNA alkyltransferase: identification of a missense variation in the active site region. Pharmacogenetics 1999;9:91–87.

    Article  Google Scholar 

  91. Imai Y, Oda H, Nakatsuru Y, and Ishikawa T. A polymorphism at codon 160 of human O6-methylguanine-DNA methyltransferase gene in young patients with adult type cancers and functional assay. Carcinogenesis 1995;16:2441–2445.

    Article  PubMed  CAS  Google Scholar 

  92. Kaur TB, Travaline JM, Gaughan JP, Richie JP, Stellman SD, Lazarus P. Role of polymorphism in codons 143 and 160 of the O6-alkylguanine DNA alkyltransferase gene in lung cancer risk. Cancer Epidemiol Biomarkers Prev 2000;9:339–342.

    PubMed  CAS  Google Scholar 

  93. Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR. Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomark Prev 2002;11:409–412.

    Google Scholar 

  94. Xu J, Zheng SL, Turner A, et al. Associations between hOGG1 sequence variants and prostate cancer susceptibility. Cancer Res 2002;62:2253–2257.

    PubMed  CAS  Google Scholar 

  95. Elahi A, Zheng Z, Park J, Eyring K, McCaffrey T, Lazarus P. The human OGG1 DNA repair enzyme and its association with orolaryngeal cancer risk. Carcinogenesis 2002;23:1229–1234.

    Article  PubMed  CAS  Google Scholar 

  96. Berrozpe G, Schaeffer J, Peinado MA, Real FX, Perucho M. Comparative analysis of mutations in the p53 and K-ras genes in pancreatic cancer. Int J Cancer 1994;58:185–191.

    Article  PubMed  CAS  Google Scholar 

  97. Hruban RH, van Mansfeld AD, Offerhaus GJ, et al. K-ras oncogene activation in adenocarcinoma of the human pancreas: A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Path 1993;143:545–554.

    PubMed  CAS  Google Scholar 

  98. Blanck HM, Tolbert PE, Hoppin JA. Patterns of genetic alterations in pancreatic cancer: a pooled analysis. Environ Mol Mut 1999;33:111–122.

    Article  CAS  Google Scholar 

  99. Sugio K, Gazdar AF, Albores-Saavedra J, Kokkinakis DM. High yields of K-ras mutations in intraductal papillary mucinous tumors and invasive adenocarcinomas induced by N-nitroso(2-hydroxypropyl)(2-oxopropyl)amine in the pancreas of female Syrian hamsters. Carcinogenesis 1996;17:303–309.

    Article  PubMed  CAS  Google Scholar 

  100. Cooper GM. Role of oncogenes and tumor suppressor genes in the pathogenesis of neoplasms. in Oncogene. Jones-Bartlett Publishers, 1990; pp.141–162.

  101. Malats N, Porta M, Corominas JM, Pinol JL, Rifa J, Real FX. Ki-ras mutations in exocrine pancreatic cancer: Association with clinico-pathological characteristics and with tobacco and alcohol consumption. Int J Cancer 1997;70:661–667.

    Article  PubMed  CAS  Google Scholar 

  102. Berger DH, Chang H, Wood M, et al. Mutational activation of K-ras in non-neoplastic exocrine pancreatic lesions in relation to cigarette smoking status. Cancer 1999;85:326–329.

    Article  PubMed  CAS  Google Scholar 

  103. Porta M, Malats N, Jariod M, et al. Serum concentrations of organochlorine compounds and K-ras mutations in exocrine pancreatic cancer. PANKRAS II Study Group. Lancet 1999;354:2125–2129.

    Article  PubMed  CAS  Google Scholar 

  104. Alguacil J, Porta M, Malats N, et al. PANKRAS II Study Group. Occupational exposure to organic solvents and K-ras mutations in exocrine pancreatic cancer. Carcinogenesis 2002;23:101–106.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donghui Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Jiao, L. Molecular epidemiology of pancreatic cancer. Int J Gastrointest Canc 33, 3–13 (2003). https://doi.org/10.1385/IJGC:33:1:3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/IJGC:33:1:3

Key Words

Navigation