Skip to main content
Log in

Cyclooxygenase-2 and thromboxane synthase in non-endocrine and endocrine tumors: A review

  • Review
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Prostaglandins (PG) are members of a large group of hormonally active fatty acids derived from free fatty acids. They are formed from arachidonic acid—the major PG precursor. Cyclooxygenase (COX)-1 and -2 are the rate-limiting steps in PG synthesis. COX-2 is overexpressed in many human non-endocrine and endocrine tumors including colon, breast, prostate, brain, thyroid, and pituitary. COX-2 has an important role in angiogenesis and tumor growth. Thromboxane synthase (TS) catalyzes the synthesis of thromboxane A2 (TXA2), which is derived from arachidonic acid and prostaglandin H2 and is a vasoconstrictor and inducer of platelet aggregation. TXA2 stimulates tumor growth and spread of some tumors and TS appears to have a critical role in tumorigenesis in some organ systems.

In this review, we examine the role of COX-2 and TS in various non-endocrine tumors, especially colon, breast, prostate, and brain as well as in endocrine tumors. The accumulating evidence points to an increasingly important role of COX-2 and TS in tumor progression and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thun MJ, Namboodiri MM, Heath CW, Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 325:1593–1596, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Giovannucci E, Egan KM, Hunter DJ, et al. Aspirin and the risk of colorectal cancer in women. N Engl J Med 333:609–614, 1995.

    Article  PubMed  CAS  Google Scholar 

  3. Sandler RS, Galanko JC, Murray SC, Helm JF, Woosley JT. Aspirin and nonsteroidal anti-inflammatory agents and risk for colorectal adenomas. Gastroenterology 114:441–447, 1998.

    Article  PubMed  CAS  Google Scholar 

  4. Logan RF, Little J, Hawtin PG, Hardcastle JD. Effect of aspirin and non-steroidal anti-inflammatory drugs on colorectal adenomas: case-control study of subjects participating in the Nottingham faecal occult blood screening programme. BMJ 307:285–289, 1993.

    PubMed  CAS  Google Scholar 

  5. Smith WL, DeWitt DL, Garavito RM. Cyclooxygenases: structural, cellular, and molecular biology. Annu Rev Biochem 69:145–182, 2000.

    Article  PubMed  CAS  Google Scholar 

  6. Hamberg M, Samuelsson B. Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci USA 70:899–903, 1973.

    Article  PubMed  CAS  Google Scholar 

  7. Ihara H, Yokoyama C, Miyata A, et al. Induction of thromboxane synthase and protaglandin endoperoxide synthase mRNAs in human erythroleukemia cells by phorbol ester. FEBS Lett 306:161–164, 1992.

    Article  PubMed  CAS  Google Scholar 

  8. McDonough W, Tran N, Giese A, Norman SA, Berens ME. Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase. J Neuropathol Exp Neurol 57:449–455, 1998.

    PubMed  CAS  Google Scholar 

  9. Giese A, Hagel C, Kim EL, et al. Thromboxane synthase regulates the migratory phenotype of human glioma cells. Neuro-oncol 1:3–13, 1999.

    Article  PubMed  CAS  Google Scholar 

  10. Pradono P, Tazawa R, Maemondo M, et al. Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Res 62:63–66, 2002.

    PubMed  CAS  Google Scholar 

  11. Daniel TO, Liu H, Morrow JD, Crews BC, Marnett LJ. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res 59:4574–4577, 1999.

    PubMed  CAS  Google Scholar 

  12. Vane JR, Bakhle YS, Botting RM. Cyclo-oxygenase 1 and 2. Annu Rev Pharmacol Toxicol 38:97–120, 1998.

    Article  PubMed  CAS  Google Scholar 

  13. Chan BS, Satriano JA, Pucci M, Schuster VL. Mechanism of prostaglandin E2 transport across the plasma membrane of HeLa cells and Xenopus oocytes expressing the prostaglandin transporter “PGT.” J Biol Chem 273:6689–6697, 1998.

    Article  PubMed  CAS  Google Scholar 

  14. Ushikubi F, Segi E, Sugimoto Y, et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3. Nature 395:281–284, 1998.

    Article  PubMed  CAS  Google Scholar 

  15. Murata T, Ushikubi F, Matsuoka T, et al. Altered pain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388:678–682, 1997.

    Article  PubMed  CAS  Google Scholar 

  16. Lim H, Gupta RA, Ma WG, et al. Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev 13:1561–1574, 1999.

    PubMed  CAS  Google Scholar 

  17. Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875, 2001.

    Article  PubMed  CAS  Google Scholar 

  18. Bjorkman DJ. The effect of aspirin and non-steroidal anti-inflammatory drugs on prostaglandins. Am J Med 105:8S-12S, 1998.

    Article  PubMed  CAS  Google Scholar 

  19. Hla T, Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci USA 89:7384–7388, 1992.

    Article  PubMed  CAS  Google Scholar 

  20. Williams CS, DuBois RN. Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol 270:G393–400, 1996.

    PubMed  CAS  Google Scholar 

  21. Morita I, Schindler M, Regier MK, et al. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J Biol Chem 270:10902–10908, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Kujubu DA, Fletcher BS, Varnum BC, Lim RW, Herschman HR. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J Biol Chem 266:12866–12872, 1991.

    PubMed  CAS  Google Scholar 

  23. Smith WL, DeWitt DL. Biochemistry of prostaglandin endoperoxide H synthase-1 and synthase-2 and their differential susceptibility to nonsteroidal anti-inflammatory drugs. Semin Nephrol 15:179–194, 1995.

    PubMed  CAS  Google Scholar 

  24. Sheng H, Williams CS, Shao J, Liang P, DuBois RN, Beauchamp RD. Induction of cyclooxygenase-2 by activated Ha-ras oncogene in Rat-1 fibroblasts and the role of mitogen-activated protein kinase pathway. J Biol Chem 273:22120–22127, 1998.

    Article  PubMed  CAS  Google Scholar 

  25. Sheng H, Shao J, Dixon DA, et al. Transforming growth factor-betal enhances Ha-ras-induced expression of cyclooxygenase-2 in intestinal epithelial cells via stabilization of mRNA. J Biol Chem 275:6628–6635, 2000.

    Article  PubMed  CAS  Google Scholar 

  26. Sheng H, Shao J, Dubois RN. K-Ras-mediated increase in cyclooxygenase 2 mRNA stability involves activation of the protein kinase B1. Cancer Res 61:2670–2675, 2001.

    PubMed  CAS  Google Scholar 

  27. Ristimaki A, Sivula A, Lundin J, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res 62:632–635, 2002.

    PubMed  CAS  Google Scholar 

  28. Araki Y, Okamura S, Hussain SP, et al. Regulation of cyclooxygenase-2 expression by the Wnt and ras pathways. Cancer Res 63:728–734, 2003.

    PubMed  CAS  Google Scholar 

  29. Jones MK, Wang H, Peskar BM, et al. Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 5:1418–1423, 1999.

    Article  PubMed  CAS  Google Scholar 

  30. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716, 1998.

    Article  PubMed  CAS  Google Scholar 

  31. Masferrer JL, Leahy KM, Koki AT, et al. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res 60:1306–1311, 2000.

    PubMed  CAS  Google Scholar 

  32. Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Invest 105:1589–1594, 2000.

    PubMed  CAS  Google Scholar 

  33. Leung WK, To KF, Go MY, et al. Cyclooxygenase-2 upregulates vascular endothelial growth factor expression and angiogenesis in human gastric carcinoma. Int J Oncol 23:1317–1322, 2003.

    PubMed  CAS  Google Scholar 

  34. Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94:3336–3340, 1997.

    Article  PubMed  CAS  Google Scholar 

  35. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501, 1995.

    Article  PubMed  CAS  Google Scholar 

  36. Gupta RA, Dubois RN. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21, 2001.

    Article  PubMed  CAS  Google Scholar 

  37. Oshima M, Dinchuk JE, Kargman SL, et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87:803–809, 1996.

    Article  PubMed  CAS  Google Scholar 

  38. Liu CH, Chang SH, Narko K, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem 276:18563–18569, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Neufang G, Furstenberger G, Heidt M, Marks F, Muller-Decker K. Abnormal differentiation of epidermis in transgenic mice constitutively expressing cyclooxygenase-2 in skin. Proc Natl Acad Sci USA 98:7629–7634, 2001.

    Article  PubMed  CAS  Google Scholar 

  40. Dannenberg AJ, Howe LR. The role of COX-2 in breast and cervical cancer. Prog Exp Tumor Res 37:90–106, 2003.

    PubMed  CAS  Google Scholar 

  41. Jones DA, Fitzpatrick FA. “Suicide” inactivation of thromboxane A2 synthase. Characteristics of mechanism-based inactivation with isolated enzyme and intact platelets. J Biol Chem 265:20166–20171, 1990.

    PubMed  CAS  Google Scholar 

  42. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annu Rev Biochem 55:69–102, 1986.

    Article  PubMed  CAS  Google Scholar 

  43. Hirata M, Hayashi Y, Ushikubi F, et al. Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature 349:617–620, 1991.

    Article  PubMed  CAS  Google Scholar 

  44. Ogletree ML. Overview of physiological and pathophysiological effects of thromboxane A2. Fed Proc 46:133–138, 1987.

    PubMed  CAS  Google Scholar 

  45. Tone Y, Miyata A, Hara S, Yukawa S, Tanabe T. Abundant expression of thromboxane synthase in rat macrophages. FEBS Lett 340:241–244, 1994.

    Article  PubMed  CAS  Google Scholar 

  46. Nie D, Lamberti M, Zacharek A, et al. Thromboxane A(2) regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochem Biophys Res Commun 267:245–251, 2000.

    Article  PubMed  CAS  Google Scholar 

  47. Giardiello FM, Hamilton SR, Krush AJ, et al. Treatment of colonic and rectal adenomas with sulindac in familial adenomatous polyposis. N Engl J Med 328:1313–1316, 1993.

    Article  PubMed  CAS  Google Scholar 

  48. Labayle D, Fischer D, Vielh P, et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101:635–639, 1991.

    PubMed  CAS  Google Scholar 

  49. Nugent KP, Farmer KC, Spigelman AD, Williams CB, Phillips RK. Randomized controlled trial of the effect of sulindac on duodenal and rectal polyposis and cell proliferation in patients with familial adenomatous polyposis. Br J Surg 80:1618–1619, 1993.

    Article  PubMed  CAS  Google Scholar 

  50. Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med 342:1946–1952, 2000.

    Article  PubMed  CAS  Google Scholar 

  51. Higuchi T, Iwama T, Yoshinaga K, Toyooka M, Taketo MM, Sugihara K. A randomized, double-blind, placebo-controlled trial of the effects of rofecoxib, a selective cyclooxygenase-2 inhibitor, on rectal polyps in familial adenomatous polyposis patients. Clin Cancer Res 9:4756–4760, 2003.

    PubMed  CAS  Google Scholar 

  52. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN. Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188, 1994.

    PubMed  CAS  Google Scholar 

  53. Sano H, Kawahito Y, Wilder RL, et al. Expression of cyclooxygenase-1 and -2 in human colorectal cancer. Cancer Res 55:3785–3789, 1995.

    PubMed  CAS  Google Scholar 

  54. DuBois RN, Giardiello FM, Smalley WE. Nonsteroidal anti-inflammatory drugs, eicosanoids, and colorectal cancer prevention. Gastroenterol Clin North Am 25:773–791, 1996.

    Article  PubMed  CAS  Google Scholar 

  55. Williams CS, Luongo C, Radhika A, et al. Elevated cyclooxygenase-2 levels in Min mouse adenomas. Gastroenterology 111:1134–1140, 1996.

    Article  PubMed  CAS  Google Scholar 

  56. Chapple KS, Cartwright EJ, Hawcroft G, et al. Localization of cyclooxygenase-2 in human sporadic colorectal adenomas. Am J Pathol 156:545–553, 2000.

    PubMed  CAS  Google Scholar 

  57. Muller-Decker K, Albert C, Lukanov T, Winde G, Marks F, Furstenberger G. Cellular localization of cyclo-oxygenase isozymes in Crohn’s disease and colorectal cancer. Int J Colorectal Dis 14:212–218, 1999.

    Article  PubMed  CAS  Google Scholar 

  58. Khan KN, Masferrer JL, Woerner BM, Soslow R, Koki AT. Enhanced cyclooxygenase-2 expression in sporadic and familial adenomatous polyposis of the human colon. Scand J Gastroenterol 36:865–869, 2001.

    Article  PubMed  CAS  Google Scholar 

  59. Sheehan KM, Sheahan K, O’Donoghue DP, et al. The relationship between cyclooxygenase-2 expression and colorectal cancer. JAMA 282:1254–1257, 1999.

    Article  PubMed  CAS  Google Scholar 

  60. Kutchera W, Jones DA, Matsunami N, et al. Prostaglandin H synthase 2 is expressed abnormally in human colon cancer: evidence for a transcriptional effect. Proc Natl Acad Sci USA 93:4816–4820, 1996.

    Article  PubMed  CAS  Google Scholar 

  61. Nakajima T, Hamanaka K, Fukuda T, Oyama T, Kashiwabara K, Sano T. Why is cyclooxygenase-2 expressed in neuroendocrine cells of the human alimentary tract? Pathol Int 47:889–891, 1997.

    Article  PubMed  CAS  Google Scholar 

  62. Hasegawa K, Ichikawa W, Fujita T, et al. Expression of cyclooxygenase-2 (COX-2) mRNA in human colorectal adenomas. Eur J Cancer 37:1469–1474, 2001.

    Article  PubMed  CAS  Google Scholar 

  63. Yang VW, Shields JM, Hamilton SR, et al. Size-dependent increase in prostanoid levels in adenomas of patients with familial adenomatous polyposis. Cancer Res 58:1750–1753, 1998.

    PubMed  CAS  Google Scholar 

  64. Sheehan KM, O’Connell F, O’Grady A, et al. The relationship between cyclooxygenase-2 expression and characteristics of malignant transformation in human colorectal adenomas. Eur J Gastroenterol Hepatol 16:619–625, 2004.

    Article  PubMed  CAS  Google Scholar 

  65. Arao J, Sano Y, Fujii T, et al. Cyclooxygenase-2 is overexpressed in serrated adenoma of the colorectum. Dis Colon Rectum 44:1319–1323, 2001.

    Article  PubMed  CAS  Google Scholar 

  66. Fujita T, Matsui M, Takaku K, et al. Size- and invasion-dependent increase in cyclooxygenase 2 levels in human colorectal carcinomas. Cancer Res 58:4823–4826, 1998.

    PubMed  CAS  Google Scholar 

  67. Moorghen M, Ince P, Finney KJ, Sunter JP, Appleton DR, Watson AJ. A protective effect of sulindac against chemically-induced primary colonic tumours in mice. J Pathol 156:341–347, 1988.

    Article  PubMed  CAS  Google Scholar 

  68. Jacob RF, Marshall DJ, Newton MA, et al. Chemoprevention of spontaneous intestinal adenomas in the Apc Min mouse model by the nonsteroidal anti-inflammatory drug piroxicam. Cancer Res 56:710–714, 1996.

    Google Scholar 

  69. Barnes CJ, Lee M. Chemoprevention of spontaneous intestinal adenomas in the adenomatous polyposis coli Min mouse model with aspirin. Gastroenterology 114:873–877, 1998.

    Article  PubMed  CAS  Google Scholar 

  70. Rahme E, Barkun AN, Toubouti Y, Bardou M. The cyclooxygenase-2-selective inhibitors rofecoxib and celecoxib prevent colorectal neoplasia occurrence and recurrence. Gastroenterology 125:404–412, 2003.

    Article  PubMed  CAS  Google Scholar 

  71. Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J. Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62:2029–2033, 2002.

    PubMed  CAS  Google Scholar 

  72. Shiff SJ, Qiao L, Tsai LL, Rigas B. Sulindac sulfide, an aspirin-like compound, inhibits proliferation, causes cell cycle quiescence, and induces apoptosis in HT-29 colon adenocarcinoma cells. J Clin Invest 96:491–503, 1995.

    Article  PubMed  CAS  Google Scholar 

  73. Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ. Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274:10911–10915, 1999.

    Article  PubMed  CAS  Google Scholar 

  74. Sheng GG, Shao J, Sheng H, et al. A selective cyclooxygenase 2 inhibitor suppresses the growth of H-ras-transformed rat intestinal epithelial cells. Gastroenterology 113:1883–1891, 1997.

    Article  PubMed  CAS  Google Scholar 

  75. Fujita M, Fukui H, Kusaka T, et al. Relationship between cyclooxygenase-2 expression and K-ras gene mutation in colorectal adenomas. J Gastroenterol Hepatol 15:1277–1281, 2000.

    Article  PubMed  CAS  Google Scholar 

  76. Liang JT, Huang KC, Jeng YM, Lee PH, Lai HS, Hsu HC. Microvessel density, cyclooxygenase 2 expression, K-ras mutation and p53 overexpression in colonic cancer. Br J Surg 91:355–361, 2004.

    Article  PubMed  CAS  Google Scholar 

  77. Karnes WE, Jr., Shattuck-Brandt R, Burgart LJ, et al. Reduced COX-2 protein in colorectal cancer with defective mismatch repair. Cancer Res 58:5473–5477, 1998.

    PubMed  CAS  Google Scholar 

  78. Sinicrope FA, Lemoine M, Xi L, et al. Reduced expression of cyclooxygenase 2 proteins in hereditary nonpolyposis colorectal cancers relative to sporadic cancers. Gastroenterology 117:350–358, 1999.

    Article  PubMed  CAS  Google Scholar 

  79. Marnett LJ. Aspirin and the potential role of prostaglandins in colon cancer. Cancer Res 52:5575–5589, 1992.

    PubMed  CAS  Google Scholar 

  80. Coogan PF, Rao SR, Rosenberg L, et al. The relationship of nonsteroidal anti-inflammatory drug use to the risk of breast cancer. Prev Med 29:72–76, 1999.

    Article  PubMed  CAS  Google Scholar 

  81. Harris RE, Namboodiri KK, Farrar WB. Nonsteroidal antiinflammatory drugs and breast cancer. Epidemiology 7:203–205, 1996.

    Article  PubMed  CAS  Google Scholar 

  82. Egan KM, Stampfer MJ, Giovannucci E, Rosner BA, Colditz GA. Prospective study of regular aspirin use and the risk of breast cancer. J Natl Cancer Inst 88:988–993, 1996.

    Article  PubMed  CAS  Google Scholar 

  83. Nakatsugi S, Ohta T, Kawamori T, et al. Chemoprevention by nimesulide, a selective cyclooxygenase-2 inhibitor, of 2-amino-1-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP)-induced mammary gland carcinogenesis in rats. Jpn J Cancer Res 91:886–892, 2000.

    PubMed  CAS  Google Scholar 

  84. Robertson FM, Parrett ML, Joarder FS, et al. Ibuprofen-induced inhibition of cyclooxygenase isoform gene expression and regression of rat mammary carcinomas. Cancer Lett 122:165–175, 1998.

    Article  PubMed  CAS  Google Scholar 

  85. Harris RE, Alshafie GA, Abou-Issa H, Seibert K. Chemoprevention of breast cancer in rats by celecoxib, a cyclooxygenase 2 inhibitor. Cancer Res 60:2101–2103, 2000.

    PubMed  CAS  Google Scholar 

  86. Rozic JG, Chakraborty C, Lala PK. Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis. Int J Cancer 93:497–506, 2001.

    Article  PubMed  CAS  Google Scholar 

  87. Kundu N, Yang Q, Dorsey R, Fulton AM. Increased cyclooxygenase-2 (cox-2) expression and activity in a murine model of metastatic breast cancer. Int J Cancer 93:681–686, 2001.

    Article  PubMed  CAS  Google Scholar 

  88. Liu XH, Rose DP. Differential expression and regulation of cyclooxygenase-1 and -2 in two human breast cancer cell lines. Cancer Res 56:5125–5127, 1996.

    PubMed  CAS  Google Scholar 

  89. Kundu N, Fulton AM. Selective cyclooxygenase (COX)-1 or COX-2 inhibitors control metastatic disease in a murine model of breast cancer. Cancer Res 62:2343–2346, 2002.

    PubMed  CAS  Google Scholar 

  90. Yoshimura N, Sano H, Okamoto M, et al. Expression of cyclooxygenase-1 and -2 in human breast cancer. Surg Today 33:805–811, 2003.

    Article  PubMed  CAS  Google Scholar 

  91. Watanabe O, Shimizu T, Imamura H, et al. Expression of cyclooxygenase-2 in malignant and benign breast tumors. Anticancer Res 23:3215–3221, 2003.

    PubMed  CAS  Google Scholar 

  92. Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors. Cancer 89:2637–2645, 2000.

    Article  PubMed  CAS  Google Scholar 

  93. Subbaramaiah K, Norton L, Gerald W. Increased expression of cyclooxygenase-2 in HER-2-overexpressing human breast cancer cells. NCI 7th SPORE Investigators Workshop. 1999.

  94. Bennett A, Berstock DA, Raja B, Stamford IF. Survival time after surgery is inversely related to the amounts of prostaglandins extracted from human breast cancers [proceedings]. Br J Pharmacol 66:451P, 1979.

    Google Scholar 

  95. Rolland PH, Martin PM, Jacquemier J, Rolland AM, Toga M. Prostaglandin in human breast cancer: evidence suggesting that an elevated prostaglandin production is a marker of high metastatic potential for neoplastic cells. J Natl Cancer Inst 64:1061–1070, 1980.

    PubMed  CAS  Google Scholar 

  96. Brueggemeier RW, Quinn AL, Parrett ML, Joarder FS, Harris RE, Robertson FM. Correlation of aromatase and cyclooxygenase gene expression in human breast cancer specimens. Cancer Lett 140:27–35, 1999.

    Article  PubMed  CAS  Google Scholar 

  97. Shim JY, An HJ, Lee YH, Kim SK, Lee KP, Lee KS. Overexpression of cyclooxygenase-2 is associated with breast carcinoma and its poor prognostic factors. Mod Pathol 16:1199–1204, 2003.

    Article  PubMed  Google Scholar 

  98. Denkert C, Winzer KJ, Muller BM, et al. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer 97:2978–2987, 2003.

    Article  PubMed  CAS  Google Scholar 

  99. Wulfing P, Diallo R, Muller C, et al. Analysis of cyclooxygenase-2 expression in human breast cancer: high throughput tissue microarray analysis. J Cancer Res Clin Oncol 129:375–382, 2003.

    Article  PubMed  CAS  Google Scholar 

  100. Subbaramaiah K, Norton L, Gerald W, Dannenberg AJ. Cyclooxygenase-2 is over-expressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem 277:18649–18657, 2002.

    Article  PubMed  CAS  Google Scholar 

  101. Howe LR, Subbaramaiah K, Patel J, et al. Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res 62:5405–5407, 2002.

    PubMed  CAS  Google Scholar 

  102. Half E, Tang XM, Gwyn K, Sahin A, Wathen K, Sinicrope FA. Cyclooxygenase-2 expression in human breast cancers and adjacent ductal carcinoma in situ. Cancer Res 62:1676–1681, 2002.

    PubMed  CAS  Google Scholar 

  103. Simeone AM, Li YJ, Broemeling LD, Johnson MM, Tuna M, Tari AM. Cyclooxygenase-2 is essential for HER2/neu to suppress N-(4-hydroxyphenyl)retinamide apoptotic effects in breast cancer cells. Cancer Res 64:1224–1228, 2004.

    Article  PubMed  CAS  Google Scholar 

  104. Chang SH, Liu CH, Conway R, et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 101:591–596, 2004.

    Article  PubMed  CAS  Google Scholar 

  105. Davies G, Salter J, Hills M, Martin LA, Sacks N, Dowsett M. Correlation between cyclooxygenase-2 expression and angiogenesis in human breast cancer. Clin Cancer Res 9:2651–2656, 2003.

    PubMed  CAS  Google Scholar 

  106. Nelson JE, Harris RE. Inverse association of prostate cancer and non-steroidal anti-inflammatory drugs (NSAIDs): results of a case-control study. Oncol Rep 7:169–170, 2000.

    PubMed  CAS  Google Scholar 

  107. Langman MJ, Cheng KK, Gilman EA, Lancashire RJ. Effect of anti-inflammatory drugs on overall risk of common cancer: case-control study in general practice research database. BMJ 320:1642–1646, 2000.

    Article  PubMed  CAS  Google Scholar 

  108. Basler JW, Piazza GA. Nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 selective inhibitors for prostate cancer chemoprevention. J Urol 171:S59–62; discussion S62-53, 2004.

    Article  PubMed  CAS  Google Scholar 

  109. Kirschenbaum A, Klausner AP, Lee R, et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in the human prostate. Urology 56:671–676, 2000.

    Article  PubMed  CAS  Google Scholar 

  110. Gupta S, Srivastava M, Ahmad N. Bostwick DG, Mukhtar H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 42:73–78, 2000.

    Article  PubMed  CAS  Google Scholar 

  111. Madaan S, Abel PD, Chaudhary KS, et al. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: implications for prevention and treatment. BJU Int 86:736–741, 2000.

    Article  PubMed  CAS  Google Scholar 

  112. Yoshimura R, Sano H, Masuda C, et al. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 89:589–596, 2000.

    Article  PubMed  CAS  Google Scholar 

  113. Lee LM, Pan CC, Cheng CJ, Chi CW, Liu TY. Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res 21:1291–1294, 2001.

    PubMed  CAS  Google Scholar 

  114. Uotila P, Valve E, Martikainen P, Nevalainen M, Nurmi M, Harkonen P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol Res 29:23–28, 2001.

    Article  PubMed  CAS  Google Scholar 

  115. Subbarayan V, Sabichi AL, Llansa N, Lippman SM, Menter DG. Differential expression of cyclooxygenase-2 and its regulation by tumor necrosis factor-alpha in normal and malignant prostate cells. Cancer Res 61:2720–2726, 2001.

    PubMed  CAS  Google Scholar 

  116. Barqawi A, Thompson IM, Crawford ED. Prostate cancer chemoprevention: an overview of United States trials. J Urol 171:S5–8; discussion S9, 2004.

    Article  PubMed  Google Scholar 

  117. Liu XH, Yao S, Kirschenbaum A, Levine AC. NS398, a selective cyclooxygenase-2 inhibitor, induces apoptosis and down-regulates bcl-2 expression in LNCaP cells. Cancer Res 58:4245–4249, 1998.

    PubMed  CAS  Google Scholar 

  118. Liu XH, Kirschenbaum A, Yao S, Lee R, Holland JF, Levine AC. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol 164:820–825, 2000.

    Article  PubMed  CAS  Google Scholar 

  119. Kulp SK, Yang YT, Hung CC, et al. 3-phosphoinositide-dependent protein kinase-1/Akt signaling represents a major cyclooxygenase-2-independent target for celecoxib in prostate cancer cells. Cancer Res 64:1444–1451, 2004.

    Article  PubMed  CAS  Google Scholar 

  120. Zha S, Gage WR, Sauvageot J, et al. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 61:8617–8623, 2001.

    PubMed  CAS  Google Scholar 

  121. Deininger MH, Weller M, Streffer J, Mittelbronn M, Meyermann R. Patterns of cyclooxygenase-1 and -2 expression in human gliomas in vivo. Acta Neuropathol (Berl) 98:240–244, 1999.

    Article  CAS  Google Scholar 

  122. Prayson RA, Castilla EA, Vogelbaum MA, Barnett GH. Cyclooxygenase-2 (COX-2) expression by immunohistochemistry in glioblastoma multiforme. Ann Diagn Pathol 6:148–153, 2002.

    Article  PubMed  Google Scholar 

  123. Shono T, Tofilon PJ, Bruner JM, Owolabi O, Lang FF. Cyclooxygenase-2 expression in human gliomas: prognostic significance and molecular correlations. Cancer Res 61:4375–4381, 2001.

    PubMed  CAS  Google Scholar 

  124. Joki T, Heese O, Nikas DC, et al. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vitro inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 60:4926–4931, 2000.

    PubMed  CAS  Google Scholar 

  125. Matsuo M, Yonemitsu N, Zaitsu M, et al. Expression of prostaglandin H synthase-2 in human brain tumors. Acta Neuropathol (Berl) 102:181–187, 2001.

    CAS  Google Scholar 

  126. Castilla EA, Prayson RA, Kanner AA, et al. Cyclooxygenase-2 in oligodendroglial neoplasms. Cancer 98:1465–1472, 2003.

    Article  PubMed  CAS  Google Scholar 

  127. Deininger MH, Meyermann R, Trautmann K, et al. Cyclooxygenase (COX)-1 expressing macrophages/microglial cells and COX-2 expressing astrocytes accumulate during oligodendroglial godendroglioma progression. Brain Res 885:111–116, 2000.

    Article  PubMed  CAS  Google Scholar 

  128. Prayson RA, Cyclooxygenase-2, Bcl-2, and chromosome 1p analysis in protoplasmic astrocytomas. Hum Pathol 35:317–321, 2004.

    Article  PubMed  CAS  Google Scholar 

  129. Patti R, Gumired K, Reddanna P, Sutton LN, Phillips PC, Reddy CD. Overexpression of cyclooxygenase-2 (COX-2) in human primitive neuroectodermal tumors: effect of celecoxib and rofecoxib. Cancer Lett 180:13–21, 2002.

    Article  PubMed  CAS  Google Scholar 

  130. Matsuo M, Yoshida N, Zaitsu M, Ishii K, Hamasaki Y. Inhibition of human glioma cell growth by a PHS-2 inhibitor, NS398, and a prostaglandin E receptor subtype EP1-selective antagonist, SC51089. J Neurooncol 66:285–292, 2004.

    Article  PubMed  Google Scholar 

  131. King JG, Jr, Khalili K. Inhibition of human brain tumor cell growth by the anti-inflammatory drug, flurbiprofen. Oncogene 20:6864–6870, 2001.

    Article  PubMed  CAS  Google Scholar 

  132. Petersen C, Petersen S, Milas L, Lang FF, Tofilon PJ. Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor. Clin Cancer Res 6:2513–2520, 2000.

    PubMed  CAS  Google Scholar 

  133. Badie B, Schartner JM, Hagar AR, et al. Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clin Cancer Res 9:872–877, 2003.

    PubMed  CAS  Google Scholar 

  134. Portnow J, Suleman S, Grossman SA, Eller S, Carson K. A cyclooxygenase-2 (COX-2) inhibitor compared with dexamethasone in a survival study of rats with intracerebral 9L gliosarcomas. Neurooncol 4:22–25, 2002.

    CAS  Google Scholar 

  135. Ito Y, Yoshida H, Nakano K, et al. Cyclooxy-genase-2 expression in thyroid neoplasms. Histopathology 42:492–497, 2003.

    Article  PubMed  CAS  Google Scholar 

  136. Nose F, Ichikawa T, Fujiwara M, Okayasu I. Up-regulation of cyclooxygenase-2 expression in lymphocytic thyroiditis and thyroid tumors: significant correlation with inducible nitric oxide synthase. Am J Clin Pathol 117:546–551, 2002.

    Article  PubMed  CAS  Google Scholar 

  137. Cornetta AJ, Russell JP, Cunnane M, Keane WM, Rothstein JL. Cyclooxygenase-2 expression in human thyroid carcinoma and Hashimoto’s thyroiditis. Laryngoscope 112:238–242, 2002.

    Article  PubMed  CAS  Google Scholar 

  138. Specht MC, Tucker ON, Hocever M, Gonzalez D, Teng L, Fahey TJ, 3rd. Cyclooxygenase-2 expression in thyroid nodules. J Clin Endocrinol Metab 87:358–363, 2002.

    Article  PubMed  CAS  Google Scholar 

  139. Kim SJ, Lee JH, Yoon JS, et al. Immunohistochemical expression of COX-2 in thyroid nodules. Korean J Intern Med 18:225–229, 2003.

    PubMed  CAS  Google Scholar 

  140. Berg J, Stocher M, Bogner S, Wolfl S, Pichler R, Stekel H. Inducible cyclooxygenase-2 gene expression in the human thyroid epithelial cell line Nthy-ori3-1. Inflamm Res 49:139–143, 2000.

    Article  PubMed  CAS  Google Scholar 

  141. Siironen P, Ristimaki A, Nordling S, Louhimo J, Haapiainen R, Haglund C. Expression of COX-2 is increased with age in papillary thyroid cancer. Histopathology 44:490–497, 2004.

    Article  PubMed  CAS  Google Scholar 

  142. Casey MB, Zhang S, Jin L, Kajita S, Lloyd RV. Expression of cyclooxygenase-2 and thromboxane synthase in non-neoplastic and neoplastic thyroid lesions. Endocr Pathol 15:107–116, 2004.

    Article  PubMed  CAS  Google Scholar 

  143. Kajita S, Ruebel KH, Casey MB, Nakamura N, Lloyd RV. Role of COX-2, thromboxane A(2) synthase, and prostaglandin I(2) synthase in papillary thyroid carcinoma growth. Mod Pathol 18:221–227, 2005.

    Article  PubMed  CAS  Google Scholar 

  144. Bell CD, Vidal S, Kovacs K, Horvath E, Rotondo F. An immunohistochemical survey of nine cases of medullary carcinoma of thyroid including reactivity for Cox-1 and Cox-2 enzymes. Endocr Pathol 13:331–340, 2002.

    Article  PubMed  Google Scholar 

  145. Vidal S, Kovacs K, Bell D, Horvath E, Scheithauer BW, Lloyd RV. Cyclooxygenase-2 expression in human pituitary tumors. Cancer 97:2814–2821, 2003.

    Article  PubMed  CAS  Google Scholar 

  146. Bloomer CW, Kenyon L, Hammond E, et al. Cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) expression in human pituitary macroadenomas. Am J Clin Oncol 26:S75–80, 2003.

    PubMed  Google Scholar 

  147. Onguru O, Scheithauer BW, Kovacs K, et al. Analysis of Cox-2 and thromboxane synthase expression in pituitary adenomas and carcinomas. Endocr Pathol 15:17–27, 2004.

    Article  PubMed  CAS  Google Scholar 

  148. Ohike N, Morohoshi T. Immunohistochemical analysis of cyclooxygenase (COX)-2 expression in pancreatic endocrine tumors: association with tumor progression and proliferation. Pathol Int 51:770–777, 2001.

    Article  PubMed  CAS  Google Scholar 

  149. Salmenkivi K, Haglund C, Ristimaki A, Arola J, Heikkila P. Increased expression of cyclooxygenase-2 in malignant pheochromocytomas. J Clin Endocrinol Metab 86:5615–5619, 2001.

    Article  PubMed  CAS  Google Scholar 

  150. Johnsen JI, Lindskog M, Ponthan F, et al. Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti-inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. Cancer Res 64:7210–7215, 2004.

    Article  PubMed  CAS  Google Scholar 

  151. Bing RJ, Miyataka M, Rich KA, et al. Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clin Cancer Res 7:3385–3392, 2001.

    PubMed  CAS  Google Scholar 

  152. Nie D, Che M, Zacharek A, et al. Differential expression of thromboxane synthase in prostate carcinoma: role in tumor cell motility. Am J Pathol 164:429–439, 2004.

    PubMed  CAS  Google Scholar 

  153. Drago JR, Al-Mondhiry HA. The effect of prostaglandin modulators on prostate tumor growth and metastasis. Anticancer Res 4:391–394, 1984.

    PubMed  CAS  Google Scholar 

  154. Castelli MG, Chiabrando C, Fanelli R, et al. Prostaglandin and thromboxane synthesis by human intracranial tumors. Cancer Res 49:1505–1508, 1989.

    PubMed  CAS  Google Scholar 

  155. Kurzel F, Hagel C, Zapf S, Meissner H, Westphal M, Giese A. Cyclo-oxygenase inhibitors and thromboxane synthase inhibitors differentially regulate migration arrest, growth inhibition and apoptosis in human glioma cells. Acta Neurochir (Wien) 144:71–87, 2002.

    Article  CAS  Google Scholar 

  156. Yoshizato K, Zapf S, Westphal M, Berens ME, Giese A. Thromboxane synthase inhibitors induce apoptosis in migration-arrested glioma cells. Neurosurgery 50:343–354, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onguru, O., Casey, M.B., Kajita, S. et al. Cyclooxygenase-2 and thromboxane synthase in non-endocrine and endocrine tumors: A review. Endocr Pathol 16, 253–277 (2005). https://doi.org/10.1385/EP:16:4:253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/EP:16:4:253

Key Words

Navigation