Skip to main content
Log in

Permeability and the mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Boron is an essential element for vascular plants and for diatoms, cyanobacteria, and a number of species of marine algal flagellates. Boron was recently established as an essential micronutrient for frogs (Xenopus laevis) and preliminary evidence suggests that it may be essential for all animals. The main form of B, which is available in the natural environment, is in the form of undissociated boric acid. The permeability coefficient and the mechanism of transport of boric acid, however, have not been experimentally determined across any animal membrane or cell. In the experiments described here, the permeability coefficient of boric acid in Xenopus oocytes was 1.5 × 10−6 cm/s, which is very close with the permeability across liposomes made with phosphatidylcholine and cholesterol (the major lipids in the oocyte membrane). Moreover, we investigated the mechanism of boric acid movement across the membrane of Xenopus oocytes and we compared it with the transport across artificial liposomes. The transport of boric acid across Xenopus oocytes was not affected by inhibitors such as HgCl2, phloretin, or 4,4-diisothiocyanatostilbene-2,2′-d-sulfonic acid (DIDS). The kinetics of B uptake was linear with concentration changes, and the permeability remained the same at different external boric acid concentrations. These results suggest that B transport occurs via simple passive diffusion through the lipid bilayer in Xenopus oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. D. Loomis and R. Durst, Chemistry and biology of boron, BioFactors 3, 229–239 (1992).

    PubMed  CAS  Google Scholar 

  2. H. Marschner, Mineral Nutrition of Higher Plants, Academic, San Diego CA (1995).

    Google Scholar 

  3. R. I. Rowe, C. Bouzan, S. Nabili, and C. D. Eckart, The response of trout and zebrafish embryos to low and high Boron concentrations is U-shaped, Biol. Trace Element Res. 66, 261–270 (1998).

    CAS  Google Scholar 

  4. D. J. Ford, T. L. Propst, E. L. Stover, P. L. Strong, and F. J. Murray, Adverse reproductive and developmental effects in Xenopus from insufficient boron, Biol. Trace Element Res 66, 237–259 (1998).

    Google Scholar 

  5. H. N. Greenwood, Boron. In Comprehensive Inorganic Chemistry, Vol. I, J. C. Bailan, ed., Pergamon Press, Oxford, pp 665–991 (1973).

    Google Scholar 

  6. J. A. Raven, Short and long distance transport of boric acid in plants, New Phytol. 84, 231–249 (1980).

    Article  CAS  Google Scholar 

  7. C. Dordas and P. H. Brown, Permeability of boric acid across lipid bilayers and factors affecting it, J. Membr. Biol. 175, 95–105 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. C. Dordas, M. J. Chrispeels, and P. H. Brown. Permeability and channel mediated transport of boric acid across membrane vesicles isolated from squash roots, Plant Physiol. 124, 1349–1362 (2000).

    Article  PubMed  CAS  Google Scholar 

  9. T-X. Xiang and B. D. Anderson, The relationship between permeant size and permeability in lipid bilayer membranes, J. Membr. Biol. 140, 111–122 (1994).

    PubMed  CAS  Google Scholar 

  10. J. M. Wolosin and H. Ginsburg, The permeability of organic acids through lecithin bilayers resemblance to diffusion in polymers, Biochim. Biophys. Acta 389, 20–33 (1975).

    Article  PubMed  CAS  Google Scholar 

  11. J. M. Wolosin, H. Ginsburg, W. R. Lieb, and W. D. Stein, Diffusion within egg lecithin bilayers resembles that within soft polymers, J. Gen. Physiol. 71, 93–100 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. M. B. Lande, J. M. Donovan, and M. L. Zeidel, The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons, J. Gen. Physiol. 106, 67–84 (1995).

    Article  PubMed  CAS  Google Scholar 

  13. S. Paula, A. G. Volkov, A. N. Van Hoek, T. H. Haines, and D. W. Deamer, Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayer as a function of membrane thickness, Biophys. J. 70, 339–348 (1996).

    PubMed  CAS  Google Scholar 

  14. P. H. Brown and H. Hu, Boron uptake by sunflower, squash and cultured tobacco cells, Physiol. Plant. 91, 435–441 (1994).

    Article  CAS  Google Scholar 

  15. H. Hu and P. H. Brown, Absorption of boron by plant roots, Plant Soil 193, 49–58 (1997).

    Article  CAS  Google Scholar 

  16. R. O. Nable, Effects of B toxicity amongst several barley wheat cultivars: a preliminary examination of the resistance mechanism, Plant Soil 112, 45–52 (1988).

    Article  CAS  Google Scholar 

  17. R. O. Nable and J. G. Paull, Mechanism and genetics of tolerance to boron toxicity in plants, in Current Topics in Plant Biochemistry and Physiology Vol. 10. D. D. Randal, D. G. Blevins, and C. D. Miles, eds., University of Missouri Press, Columbia, pp. 257–273 (1991).

    Google Scholar 

  18. R. O. Nable, G. S. Banuelos, and J. G. Paull, Boron toxicity, Plant Soil 198, 181–198 (1997).

    Article  Google Scholar 

  19. F. Dannel, H. Pfeffer, and V. Röheld, Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes 10B and 11B. Aust. J. Plant Physiol. 27, 397–405 (2000).

    CAS  Google Scholar 

  20. J. De Gier, Osmotic behavior and permeability properties of liposomes, Chem. Phys. Lipids 64, 187–196 (1993).

    Article  PubMed  Google Scholar 

  21. R. Ye and A. S. Verkman, Simultaneous optical measurements of osmotic and diffusional water permeabilities in cells and liposomes, Biochemistry 28, 824–829 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. A. S. Verkman, J. A. Dix, and J. L. Seifter, Water and urea transport in renal microvillus membrane vesicles, Am. J. Physiol. 248, F650-F655 (1985).

    PubMed  CAS  Google Scholar 

  23. M. P. Van Heeswijk, and C. H. van Os, Osmotic water permeabilities of brush border and basolateral membrane vesicles from rat renal cortex and small intestine J. Membr. Biol. 92, 183–193 (1986).

    Article  PubMed  Google Scholar 

  24. R. Zhang, and A. S. Verkman, Water and urea permeability properties of Xenopus oocytes expression of mRNA from toad urinary bladder. Am. J. Physiol. 260, C26-C34 (1991).

    PubMed  CAS  Google Scholar 

  25. A. M. S. Nyomora, R. N. Sah, P. H. Brown, and R. O. Miller, Boron determination in biological materials by inductively coupled plasma atomic emission and mass spectrometry: effects of sample dissolution methods, Fresenius J. Anal. Chem. 357, 1185–1191 (1997).

    Article  CAS  Google Scholar 

  26. F. T. Bingham, A. Elseewei, and J. J. Oertli, Characteristics of boron absorption by excised barley roots, Soil Sci. Soc. Am. Proc. 34, 613–617 (1970).

    Article  CAS  Google Scholar 

  27. M. Thellier, Y. Duval, and M. Demarty, Borate exchanges of Lemna minor l. as studied with the help of the enriched stable isotopes and of a (n, a) nuclear reaction, Plant Physiol. 63, 283–288 (1979).

    Article  PubMed  CAS  Google Scholar 

  28. A. Finkelstein, Water movement through lipids bilayer, pores and plasma membranes. Theory and reality. Wiley, New York (1987).

    Google Scholar 

  29. T. H. Haines and L. S. Liebovitch, A molecular mechanism for the transport of water across phospholipid bilayers, in Permeability and Stability of Lipid Bilayers, E. A. Disalve and S. A. Simon, eds., CRC, Boca Raton, FL. (1995).

    Google Scholar 

  30. H. Saito, T. Araiso, H. Shirahama, and T. Koyama, Dynamics of the bilayer-water interface of phospholipid vesicles and the effect of cholesterol: a picosecond fluorescence anisotropy study, J. Biochem. 109, 559 (1991).

    PubMed  CAS  Google Scholar 

  31. O. G. Mouritsen, K. Jorgensen, and T. Honger, Permeability of lipid bilayers near the phase transition, in Permeability and Stability of Lipid Bilayers, E. A. Disalve and S. A. Simon, eds., 137–157 (1995).

  32. L. W. Yousef and R. I. Macey, A method to distinguish between pore and carrier kinetics applied to urea transport across the erythrocyte membrane, Biochim. Biophys. Acta 984, 281–288 (1989).

    Article  PubMed  CAS  Google Scholar 

  33. R. I. Macey, Transport of water and urea in red blood cells, Am. J. Physiol. (Cell Physiol. 15) 246, C195–C203.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dordas, C., Brown, P.H. Permeability and the mechanism of transport of boric acid across the plasma membrane of Xenopus laevis oocytes. Biol Trace Elem Res 81, 127–139 (2001). https://doi.org/10.1385/BTER:81:2:127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/BTER:81:2:127

Index Entries

Navigation