Skip to main content

Assessing Growth and Response to Therapy in Murine Tumor Models

  • Protocol
Book cover Chemosensitivity: Volume II

Part of the book series: Methods in Molecular Medicine™ ((MIMM,volume 111))

Abstract

Rodent models provide an important means of assessing antitumor activity vs toxicity for new cancer therapies. Tumors are often grown subcutaneously on the flank or back of animals, allowing accurate serial determination of tumor volume with calipers by measuring the tumors in three dimensions. The advantages of assessing tumor volume in subcutaneous tumors must be balanced against the potential artifacts induced by growth of tumor cells in subcutaneous tissue. Various orthotopic models have been developed. However, they are more labor-intensive and generally do not allow accurate assessment of tumor growth and/or response unless investigators have access to small animal cross-sectional imaging. Use of small-animal magnetic resonance imaging (MRI) allows one to assess the growth and response of intracavitary tumors, but the cost and labor-intensive nature of MRI limits its use in drug testing. Another approach to intracavitary solid tumor models is the intravenous injection of tumor cells, which can produce lung, liver, or bone metastases (depending on the cell line used), whereas direct injection of tumor cells into the femur or tibia of mice can cause local growth in bone. Progression of both lung metastases and bone lesions can be assessed by small-animal analog X-ray techniques that are more easily available and less labor-intensive to use, and are proving useful for selected therapeutic and biological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corbet, T. H., Polin, L., Roberts, B. J., et al. (2002) Transplantable syngeneic rodent tumors: solid tumors in mice, in Tumor Models in Cancer Research (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp 41–71.

    Google Scholar 

  2. Harrison, S. (2002) Perspective on the history of tumor models, in Anticancer Drug Development Guide (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp. 3–19.

    Google Scholar 

  3. Waud, W. R. (1997) Murine L1210 and P388 leukemias, in Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp. 59–74.

    Chapter  Google Scholar 

  4. Fiebig, H. H. and Burger, A. M. (2002) Human tumor xenografts and explants, in Tumor Models in Cancer Research (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp. 113–137.

    Google Scholar 

  5. Mattern, J., Bak, M., Hahn, E. W., and Volm, M. (1988) Human tumor xenografts as model for drug testing. Cancer Metastasis Rev. 7, 263–284.

    Article  CAS  PubMed  Google Scholar 

  6. Houghton, P. J., Adamson, P. C., Blaney, S., et al. (2002) Testing of new agents in childhood cancer preclinical models: meeting summary. Clin. Cancer Res. 8, 3646–3657.

    PubMed  Google Scholar 

  7. Plowman, J., Dykes, D. J., Hollingshead, M., Simpson-Herren, L., and Alley, M. C. (1997) Human tumor xenograft models in NCI drug development, in Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials, and Approval (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp. 101–125.

    Chapter  Google Scholar 

  8. Shimosato, Y., Kameya, T., and Hirohashi, S. (1979) Growth, morphology, and function of xenotransplanted human tumors. Pathol. Annu. 14(pt 2), 215–257.

    PubMed  Google Scholar 

  9. Lock, R. B., Liem, N., Farnsworth, M. L., et al. (2002) The nonobese diabetic/ severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood 99, 4100–4108.

    Article  CAS  PubMed  Google Scholar 

  10. Lock, R. B., Liem, N. L., and Papa, R. A. (2005) Preclinical testing of antileukemic drugs using an in vivo model of systemic disease. Chemosensitivity; Volume 2. In Vivo Models, Imaging, and Molecular Regulators (Blumenthal, R. D., ed.), Humana, Totowa, NJ (in press, this volume).

    Google Scholar 

  11. Lehne, G., Sorensen, D. R., Tjonnfjord, G. E., et al. (2002) The cyclosporin PSC 833 increases survival and delays engraftment of human multidrug-resistant leukemia cells in xenotransplanted NOD-SCID mice. Leukemia 16, 2388–2394.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson, J. I., Decker, S., Zaharevitz, D., et al. (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. [see comment]. Br. J. Cancer 84, 1424–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tomayko, M. M. and Reynolds, C. P. (1989) Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 24, 148–154.

    Article  CAS  PubMed  Google Scholar 

  14. Manzotti, C., Audisio, R. A., and Pratesi, G. (1993) Importance of orthotopic implantation for human tumors as model systems: relevance to metastasis and invasion. Clin. Exp. Metastasis 11, 5–14.

    Article  CAS  PubMed  Google Scholar 

  15. Kubota, T. (1994) Metastatic models of human cancer xenografted in the nude mouse: the importance of orthotopic transplantation. J. Cell. Biochem. 56, 4–8.

    Article  CAS  PubMed  Google Scholar 

  16. Khanna, C., Jaboin, J. J., Drakos, E., Tsokos, M., and Thiele, C. J. (2002) Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis. In Vivo 16, 77–85.

    PubMed  Google Scholar 

  17. Khanna, C., Prehn, J., Yeung, C., Caylor, J., Tsokos, M., and Helman, L. (2000) An orthotopic model of murine osteosarcoma with clonally related variants differing in pulmonary metastatic potential. Clin. Exp. Metastasis 18, 261–271.

    Article  CAS  PubMed  Google Scholar 

  18. Shoji, T., Konno, H., Tanaka, T., et al. (2003) Orthotopic implantation of a colon cancer xenograft induces high expression of cyclooxygenase-2. Cancer Lett. 195, 235–241.

    Article  CAS  PubMed  Google Scholar 

  19. ElGalley, R., Keane, T. E., and Sun, C. (2003) Camptothecin analogues and vinblastine in the treatment of renal cell carcinoma: an in vivo study using a human orthotopic renal cancer xenograft. Urol. Oncol. 21, 49–57.

    Article  CAS  Google Scholar 

  20. Kikuchi, E., Xu, S., Ohori, M., et al. (2003) Detection and quantitative analysis of early stage orthotopic murine bladder tumor using in vivo magnetic resonance imaging. J. Urol. 170, 1375–1378.

    Article  PubMed  Google Scholar 

  21. Moats, R., Ma, L. Q., Wajed, R., et al. (2000) Magnetic resonance imaging for the evaluation of a novel metastatic orthotopic model of human neuroblastoma in immunodeficient mice. Clin. Exp. Metastasis 18, 455–461.

    Article  CAS  PubMed  Google Scholar 

  22. Grimm, J., Potthast, A., Wunder, A., and Moore, A. (2003) Magnetic resonance imaging of the pancreas and pancreatic tumors in a mouse orthotopic model of human cancer. Int. J. Cancer 106, 806–811.

    Article  CAS  PubMed  Google Scholar 

  23. Nelson, A. L., Algon, S. A., Munasinghe, J., et al. (2003) Magnetic resonance imaging of patched heterozygous and xenografted mouse brain tumors. J. Neuro. Oncol. 62, 259–267.

    Article  Google Scholar 

  24. Paulus, M. J., Gleason, S. S., Easterly, M. E., and Foltz, C. J. (2001) A review of high-resolution X-ray computed tomography and other imaging modalities for small animal research. [Erratum appears in Lab Anim (NY) 2001 May;30(5):13]. Lab Anim 30, 36–45.

    CAS  Google Scholar 

  25. Paulus, M. J., Gleason, S. S., Kennel, S. J., Hunsicker, P. R., and Johnson, D. K. (2000) High resolution X-ray computed tomography: an emerging tool for small animal cancer research. Neoplasia (NY) 2, 62–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ito, S., Nakanishi, H., Ikehara, Y., et al. (2001) Real-time observation of micrometastasis formation in the living mouse liver using a green fluorescent protein gene-tagged rat tongue carcinoma cell line. [Erratum appears in Int. J. Cancer 2002 Feb 20;97(6):878]. Int. J. Cancer 93, 212–217.

    Article  CAS  PubMed  Google Scholar 

  27. Hoffman, R. M. (1024) Visualization of GFP-expressing tumors and metastasis in vivo. Biotechniques 30, 1016–1022.

    Google Scholar 

  28. Yang, M., Baranov, E., Jiang, P., et al. (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Goto, H., Yang, B., Petersen, D., et al. (2003) Transduction of green fluorescent protein increased oxidative stress and enhanced sensitivity to cytotoxic drugs in neuroblastoma cell lines. Mol. Cancer Ther. 2, 911–917.

    CAS  PubMed  Google Scholar 

  30. Zhang, L., Hellstrom, K. E., and Chen, L. (1994) Luciferase activity as a marker of tumor burden and as an indicator of tumor response to antineoplastic therapy in vivo. Clin. Exp. Metastasis 12, 87–92.

    Article  CAS  PubMed  Google Scholar 

  31. Rice, B. W., Cable, M. D., and Nelson, M. B. (2001) In vivo imaging of lightemitting probes. J. Biomed. Optics 6, 432–440.

    Article  CAS  Google Scholar 

  32. Edinger, M., Sweeney, T. J., Tucker, A. A., Olomu, A. B., Negrin, R. S., and Contag, C. H. (1999) Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia (NY) 1, 303–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. El Hilali, N., Rubio, N., Martinez-Villacampa, M., and Blanco, J. (2002) Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab. Invest. 82, 1563–1571.

    Article  CAS  PubMed  Google Scholar 

  34. Thompson, J., Guichard, S. M., Cheshire, P. J., et al. (2001) Development, characterization and therapy of a disseminated model of childhood neuroblastoma in SCID mice. Cancer Chemother. Pharmacol. 47, 211–221.

    Article  CAS  PubMed  Google Scholar 

  35. Teicher, B. A. (2002) In vivo tumor response end points, in Tumor Models in Cancer Research (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp. 593–616.

    Google Scholar 

  36. Menon, K. and Teicher, B. A. (2002) Metastasis models Lungs, spleen/liver, bone, brain, in Tumor Models in Cancer Research (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp. 277–291.

    Google Scholar 

  37. Iwasaki, T., Mukai, M., Tsujimura, T., et al. (2002) Ipriflavone inhibits osteolytic bone metastasis of human breast cancer cells in a nude mouse model. Int. J. Cancer 100, 381–387.

    Article  CAS  PubMed  Google Scholar 

  38. Yi, B., Williams, P. J., Niewolna, M., Wang, Y., and Yoneda, T. (2002) Tumorderived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Res. 62, 917–923.

    CAS  PubMed  Google Scholar 

  39. Peyruchaud, O., Winding, B., Pecheur, I., Serre, C. M., Delmas, P., and Clezardin, P. (2001) Early detection of bone metastases in a murine model using fluorescent human breast cancer cells: application to the use of the bisphosphonate zoledronic acid in the treatment of osteolytic lesions. J. Bone Miner. Res. 16, 2027–2034.

    Article  CAS  PubMed  Google Scholar 

  40. Corey, E., Quinn, J. E., Bladou, F., et al. (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52, 20–33.

    Article  PubMed  Google Scholar 

  41. Sohara, Y., Shimada, H, Scadeng, M, et al. (2003) Lytic bone lesions in a human neuroblastoma xenogaft show osteo-clast recruitment and are inhibited by ibandronate. Cancer Res. 63, 3026–3031.

    CAS  PubMed  Google Scholar 

  42. Worzalla, J. E, Bewley, J. R., and Grindey, G. B. (1990) Automated measurement of transplantable solid tumors using digital electronic calipers interfaced to a microcomputer. Invest. New Drugs 8, 241–251.

    Article  CAS  PubMed  Google Scholar 

  43. Reynolds, C. P., Biedler, J. L., Spengler, B. A., et al. (1986) Characterization of human neuroblastoma cell lines established before and after therapy. J. Natl. Cancer Inst. 76, 375–387.

    CAS  PubMed  Google Scholar 

  44. Meyer, R. E., Braun, R. D., and Dewhirst, M. W. (2002) Anesthetic considerations for the study of murine tumor models, in Tumor Models in Cancer Research (Teicher, B. A., ed.), Humana Press, Totowa, NJ, pp. 407–431.

    Google Scholar 

  45. Begg, A. C. (1980) Analysis of growth delay data: potential pitfalls. Br. J. Cancer Suppl. 41, 93–97.

    Google Scholar 

  46. Dialynas, D. P., Shao, L., Billman, G. R, and Yu, J. (2001) Engraftment of human T-cell acute lymphoblastic leukemia in immunodeficient NOD/SCID mice which have been preconditioned by injection of human cord blood. Stem Cells 19, 443–452.

    Article  CAS  PubMed  Google Scholar 

  47. Fleming, T. R. and Lin, D. Y. (2000) Survival analysis in clinical trials: past developments and future directions. Biometrics 56, 971–983.

    Article  CAS  PubMed  Google Scholar 

  48. G. Gordon Steel. (1977) Growth Kinetics ofTumoours Cell Population Kinetics in Relations to the Growth and Treatment of Cancer. Clarendon Press, Oxford.

    Google Scholar 

  49. Demicheli, R., Pratesi, G., and Foroni, R. (1991) The exponential-Gompertzian tumor growth model: data from six tumor cell lines in vitro and in vivo. Estimate of the transition point from exponential to Gompertzian growth and potential clinical implications. Tumori 77, 189–195.

    CAS  PubMed  Google Scholar 

  50. Rygaard, K. and Spang-Thomsen, M. (1997) Quantitation and gompertzian analysis of tumor growth. Breast Cancer Res. Treatment 46, 303–312.

    Article  CAS  Google Scholar 

  51. Zwicker, J. I., Proffitt, R. T., and Reynolds, C. P. (1996) A microcomputer program for calculating cell population doubling time in vitro and in vivo. Cancer Chemother. Pharmacol. 37, 203–210.

    Article  CAS  PubMed  Google Scholar 

  52. Keshelava, N., Zuo, J. J., Chen, P., et al. (2001) Loss of p53 function confers high level multi-drug resistance in neuroblastoma cell lines. Cancer Res. 61, 5103–5105.

    Google Scholar 

  53. Wang, Y., Einhorn, P., Triche, T. J., Seeger, R. C., and Reynolds, C. P. (2000) Expression of protein gene product 9.5 and tyrosine hydroxylase in childhood small round cell tumors. Clin. Cancer Res. 6, 551–558.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Humana Press Inc.

About this protocol

Cite this protocol

Reynolds, C.P., Sun, BC., DeClerck, Y.A., Moats, R.A. (2005). Assessing Growth and Response to Therapy in Murine Tumor Models. In: Blumenthal, R.D. (eds) Chemosensitivity: Volume II. Methods in Molecular Medicine™, vol 111. Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-889-7:335

Download citation

  • DOI: https://doi.org/10.1385/1-59259-889-7:335

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-58829-586-6

  • Online ISBN: 978-1-59259-889-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics