Skip to main content

Advertisement

Log in

Immunological Impact of Neoadjuvant Chemoradiotherapy in Patients with Borderline Resectable Pancreatic Ductal Adenocarcinoma

  • Pancreatic Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Little is known about the immunological effect of neoadjuvant chemoradiotherapy (NACRT) in the tumor microenvironment of pancreatic ductal adenocarcinoma. The objective of this study was to examine the immunological modifications induced by NACRT in patients with pancreatic cancer.

Methods

Fifty-two patients with pancreatic cancer who underwent surgical resection were enrolled in this study. NACRT was administered to 22 patients, whereas the other 30 patients underwent surgical resection without NACRT. The resected tumor specimens were analyzed for the presence of tumor-infiltrating lymphocytes by using immunohistochemical staining for CD4, CD8, CD68, CD163, Foxp3, and major histocompatibility complex class I (MHC class I) antigen.

Results

The number of CD4+ and CD8+ lymphocytes was significantly higher in patients who received NACRT than in those who did not receive NACRT. No significant difference in MHC class I expression was observed between the groups. In the NACRT group, patients with a high accumulation of CD8+ cells experienced longer overall survival than those with a low number of CD8+ cells.

Conclusions

NACRT may induce the accumulation of CD4+ and CD8+ cells in the tumor microenvironment and a high accumulation of CD8+ cells might be a good prognostic marker for pancreatic cancer treated with NACRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer Statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Wray CJ, Ahmad SA, Matthews JB, Lowy AM. Surgery for pancreatic cancer: recent controversies and current practice. Gastroenterology. 2005;128:1626–41.

    Article  PubMed  Google Scholar 

  3. Evans DB, Rich TA, Byrd DR, et al. Preoperative chemoradiation and pancreaticoduodenectomy for adenocarcinoma of the pancreas. Arch Surg. 1992;127:1335–9.

    Article  CAS  PubMed  Google Scholar 

  4. White RR, Hurwitz HI, Morse MA, et al. Neoadjuvant chemoradiation for localized adenocarcinoma of the pancreas. Ann Surg Oncol. 2001;8:758–65.

    Article  CAS  PubMed  Google Scholar 

  5. Berslin TM, Hess KR, Harbison DB, et al. Neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreas: treatment variables and survival duration. Ann Surg Oncol. 2001; 8:123–32.

    Article  Google Scholar 

  6. Sasson AR, Wetherington RW, Hoffman JP, et al. Neoadjuvant chemoradiotherapy for adenocarcinoma of the pancreas: analysis of histopathology and outcome. Int J Gastrointest Cancer. 2003;34:121–8.

    Article  PubMed  Google Scholar 

  7. Pisters PW, Wolff RA, Janjan NA, et al. Preoperative paclitaxel concurrent rapid-fractionation radiation for resectable pancreatic adenocarcinoma: toxicities, histologic response rates, event-free outcome. J Clin Oncol. 2002;20:2537–44.

    Article  CAS  PubMed  Google Scholar 

  8. Evans DB, Varadhachary GR, Grane CH, et al. Preoperative gemcitabine-based chemoradiation for patients with resectable adenocarcinoma of the pancreatic head. J Clin Oncol. 2008;26:3496–502.

    Article  CAS  PubMed  Google Scholar 

  9. Takai S, Satoi S, Yanagimoto H, et al. Neoadjuvant chemoradiation in patients with potentially resectable pancreatic cancer. Pancreas. 2008;36:26–32.

    Article  Google Scholar 

  10. Ohigashi H, Ishikawa O, Eguchi H, et al. Feasibility and efficacy of combination therapy with preoperative full-dose gemcitabine, concurrent three-dimensional conformal radiation, surgery, and postoperative liver perfusion chemotherapy for T3-pancreatic cancer. Ann Surg. 2009;250:88–95.

    Article  PubMed  Google Scholar 

  11. Satoi S, Toyokawa H, Yanagimoto H, et al. Neoadjuvant chemoradiation therapy using S-1 followed surgical resection in pancreatic cancer. J Gastrointest Surg. 2012;16:784–92.

    Article  PubMed  Google Scholar 

  12. Sho M, Akahori T, Tanaka T, et al. Pathological and clinical impact of neoadjuvant chemoradiotherapy using full-dose gemcitabine and concurrent radiation for resectable pancreatic cancer. J Hepatobiliary Pancreat Sci. 2013;20:197–205.

    Article  PubMed  Google Scholar 

  13. Talamonti MS, Small W Jr, Mulcahy MF, et al. A multi-institutional phase II trial of preoperative full-dose gemcitabine and concurrent radiation for patients with potentially resectable pancreatic carcinoma. Ann Surg Oncol. 2006;13:150–8.

    Article  PubMed  Google Scholar 

  14. Murata Y, Mizuno S, Kishiwada M, et al. Impact of histological response after neoadjuvant chemoradiotherapy on recurrence-free survival in UICC-T3 pancreatic adenocarcinoma but not in UICC-T4. Pancreas. 2012;41:130–6.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Conejo-Garsia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348:203–13.

    Article  CAS  PubMed  Google Scholar 

  16. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumor-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nguyen T, Naziruddin B, Dintzis S, Doherty GM, Mohanakumar T. Recognition of breast cancer-associated peptides by tumor-reactive, HLA-class I restricted allogeneic cytotoxic T lymphocytes. Int J Cancer. 1999;81:607–15.

    Article  CAS  PubMed  Google Scholar 

  18. Marzo AL, Kinnear BF, Lake RA, et al. Tumor-specific CD4+ T cells have a major ‘post-licensing’ role in CTL mediated anti-tumor immunity. J Immunol. 2000;165:6047–55.

    CAS  PubMed  Google Scholar 

  19. Thornton AM, Shevach EM. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998;188(2):287–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of Foxp3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34.

    Article  CAS  PubMed  Google Scholar 

  21. Chen JJ, Lin YC, Yao PL, et al. Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol. 2005;23:953–64.

    Article  CAS  PubMed  Google Scholar 

  22. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM. Macrophages in tumor microenvironments and progression of tumors. Clin Dev Immunol. 2012. doi:10.1155/2012/948098.

    PubMed Central  PubMed  Google Scholar 

  23. Tsuchikawa T, Miyamoto M, Yamamura Y, Shichinohe T, Hirano S, Kondo S. The immunological impact of neoadjuvant chemotherapy on the tumor microenvironment of esophageal squamous cell carcinoma. Ann Surg Oncol. 2012;19:1713–9.

    Article  PubMed  Google Scholar 

  24. Ladoire S, Arnould L, Apetoh L, Coudert B, Martin F, Chauffert B. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating Foxp3+ regulatory T cells. Clin Cancer Res. 2008;14:2413–20.

    Article  CAS  PubMed  Google Scholar 

  25. National Comprehensive Cancer Network (NCCN). Clinical practice guidelines in oncology. Pancreatic Adenocarcinoma. Version 1. 2012.

  26. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    Article  CAS  PubMed  Google Scholar 

  27. Sobin LH, Wittekind CL, eds. TNM classification of malignant tumors, 6th edn. New York: Wiley, 2002.

    Google Scholar 

  28. Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid-derived suppressor cells. Immunol Rev. 2008;222:162–79.

    Article  CAS  PubMed  Google Scholar 

  29. Ostrand-Rosenberg O. Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity. Cancer Immunol Immunother. 2010;59:1593–600.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Curiel TJ. Tregs and rethinking cancer immunotherapy. J Clin Invest. 2007;117:1167–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Sojka DK, Donepudi M, Bluestone JA, Mokyr MB. Melphalan and other anticancer modalities up-regulate B7-1 gene expression in tumor cells. J Immunol. 2000;164:6230–6.

    CAS  PubMed  Google Scholar 

  32. Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58:3941–4.

    Google Scholar 

  33. Fukunaga A, Miyamoto M, Cho Y, et al. CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltration lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas. 2004;28:26–31.

    Article  Google Scholar 

  34. Zingg U, Montani M, Frey DM, Dimhofer S, Went P, Oertli D. Influence of neoadjuvant radio-chemotherapy on tumor-infiltrating lymphocytes in squamous esophageal cancer. Eur J Surg Oncol. 2009;35:1268–72.

    Article  CAS  PubMed  Google Scholar 

  35. Chatterjee D, Katz MH, Rashid A, et al. Histologic grading of the extent of residual carcinoma following neoadjuvant chemoradiation in pancreatic ductal adenocarcinoma: a predictor for patients outcome. Cancer. 2012;118:3182–90.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.

    Article  CAS  PubMed  Google Scholar 

  37. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9.

    Article  CAS  PubMed  Google Scholar 

  38. Senovilla L, Vitale I, Martins I, et al. An anticancer therapy-elicited immunosurveillance system that eliminates tetraploid cells. Oncoimmunology. 2013;2:e22409.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Ossendorp F, Toes RE, Offringa R, van der Burg SH, Melief CJ. Importance of CD4 (+) cells responses in tumor immunity. Immunol Lett. 2000;74:75–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itaru Endo MD, PhD.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homma, Y., Taniguchi, K., Murakami, T. et al. Immunological Impact of Neoadjuvant Chemoradiotherapy in Patients with Borderline Resectable Pancreatic Ductal Adenocarcinoma. Ann Surg Oncol 21, 670–676 (2014). https://doi.org/10.1245/s10434-013-3390-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-013-3390-y

Keywords

Navigation