Skip to main content

Advertisement

Log in

Expression Profiling of Difficult-to-diagnose Thyroid Histologic Subtypes Shows Distinct Expression Profiles and Identify Candidate Diagnostic microRNAs

  • Endocrine Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

The incidence of thyroid cancer is increasing worldwide. The findings of up to 30% of thyroid fine-needle aspiration biopsies (FNAB) are inconclusive, primarily as a result of several thyroid histologic subtypes with overlapping cytologic features. MicroRNAs (miRNAs) are small noncoding RNAs and have been implicated in carcinogenesis. We hypothesized that there are miRNAs that are differentially expressed between benign and malignant thyroid tumors that are difficult to distinguish by FNAB.

Methods

The expression of 1263 human miRNAs was profiled in 47 tumor samples representing difficult to diagnose histologic subtypes of thyroid neoplasm (21 benign, 26 malignant). Differentially expressed miRNAs were validated by quantitative real-time reverse transcriptase–polymerase chain reaction. The area under the receiver operating characteristic curve (AUC) was used to determine the diagnostic accuracy of differentially expressed miRNAs.

Results

Supervised hierarchical cluster analysis demonstrated grouping of 2 histologies (papillary and follicular thyroid carcinoma). A total of 34 miRNAs were differentially expressed in malignant compared to benign thyroid neoplasms (P < 0.05). A total of 25 of the 34 nonproprietary miRNAs were selected for validation, and 15 of the 25 miRNAs were differentially expressed between benign and malignant samples with P-value < 0.05. Seven miRNAs had AUC values of >0.7. miR-7 and miR-126 had the highest diagnostic accuracy with AUCs values of 0.81 and 0.77, respectively.

Conclusion

To our knowledge, this is the first study to evaluate the diagnostic accuracy of miRNAs in thyroid histologies that are difficult to distinguish as benign or malignant by FNAB. miR-126 and miR-7 had high diagnostic accuracy and could be helpful adjuncts to thyroid FNAB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pallante P, Visone R, Croce CM, Fusco A. Deregulation of microRNA expression in follicular cell-derived human thyroid carcinomas. Endocr Relat Cancer. 2010;17:F91–104.

    Article  PubMed  CAS  Google Scholar 

  2. Shibru D, Chung KW, Kebebew E. Recent developments in the clinical application of thyroid cancer biomarkers. Curr Opin Oncol. 2008;20:13–8.

    Article  PubMed  CAS  Google Scholar 

  3. Vriens MR, Schreinemakers JM, Suh I, Guerrero MA, Clark OH. Diagnostic markers and prognostic factors in thyroid cancer. Future Oncol. 2009;5:1283–93.

    Article  PubMed  CAS  Google Scholar 

  4. Altekruse SF, Kosary CL, Krapcho M, Neyman N, et al. SEER cancer statistics review, 1975–2007. National Cancer Institute. http://seer.cancer.gov/statfacts/html/thyro.html.

  5. Sipos JA, Mazzaferri EL. Thyroid cancer epidemiology and prognostic variables. Clin Oncol (R Coll Radiol). 2010;22:395–404.

    Article  CAS  Google Scholar 

  6. National Cancer Institute at the National Institutes of Health. Thyroid cancer. http://www.cancer.gov/cancertopics/types/thyroid.

  7. Cibas ES, Alexander EK, Benson CB, de Agustin PP, et al. Indications for thyroid FNA and pre-FNA requirements: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn Cytopathol. 2008;36:390–9.

    Article  PubMed  Google Scholar 

  8. Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. J Endocrinol Invest. 2010;33(5 Suppl):51–6.

    PubMed  CAS  Google Scholar 

  9. Cibas ES. Fine-needle aspiration in the work-up of thyroid nodules. Otolaryngol Clin North Am. 2010;43:257–71, vii–viii.

    Google Scholar 

  10. Miller MC. The patient with a thyroid nodule. Med Clin North Am. 2010;94:1003–15.

    Article  PubMed  Google Scholar 

  11. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  12. Layfield LJ, Cibas ES, Baloch Z. Thyroid fine needle aspiration cytology: a review of the National Cancer Institute state of the science symposium. Cytopathology. 2010;21:75–85.

    Article  PubMed  CAS  Google Scholar 

  13. Kato MA, Fahey TJ 3rd. Molecular markers in thyroid cancer diagnostics. Surg Clin North Am. 2009;89:1139–55.

    Article  PubMed  Google Scholar 

  14. Wang CC, Friedman L, Kennedy GC, et al. A large multicenter correlation study of thyroid nodule cytopathology and histopathology. Thyroid. 2011;21:243–51.

    Article  PubMed  Google Scholar 

  15. Lewis CM, Chang KP, Pitman M, Faquin WC, Randolph GW. Thyroid fine-needle aspiration biopsy: variability in reporting. Thyroid. 2009;19:717–23.

    Article  PubMed  CAS  Google Scholar 

  16. Alexander EK. Approach to the patient with a cytologically indeterminate thyroid nodule. J Clin Endocrinol Metab. 2008;93:4175–82.

    Article  PubMed  CAS  Google Scholar 

  17. Suh I, Vriens MR, Guerrero MA, et al. Serum thyroglobulin is a poor diagnostic biomarker of malignancy in follicular and Hurthle-cell neoplasms of the thyroid. Am J Surg. 2010;200:41–6.

    Article  PubMed  CAS  Google Scholar 

  18. Davidov T, Trooskin SZ, Shanker BA, et al. Routine second-opinion cytopathology review of thyroid fine needle aspiration biopsies reduces diagnostic thyroidectomy. Surgery. 2010;148:1294–9.

    Article  PubMed  Google Scholar 

  19. Kouniavsky G, Zeiger MA. Thyroid tumorigenesis and molecular markers in thyroid cancer. Curr Opin Oncol. 2010;22:23–9.

    Article  PubMed  CAS  Google Scholar 

  20. Gomez Saez JM. Diagnostic usefulness of tumor markers in the thyroid cytological samples extracted by fine-needle aspiration biopsy. Endocr Metab Immune Disord Drug Targets. 2010;10:47–56.

    PubMed  Google Scholar 

  21. Chudova D, Wilde JI, Wang ET, Wang H, et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J Clin Endocrinol Metab. 2010;95:5296–304.

    Article  PubMed  CAS  Google Scholar 

  22. Stang MT, Carty SE. Recent developments in predicting thyroid malignancy. Curr Opin Oncol. 2009;21:11–7.

    Article  PubMed  Google Scholar 

  23. Yip L, Kebebew E, Milas M, et al. Summary statement: utility of molecular marker testing in thyroid cancer. Surgery. 2010;148:1313–5.

    Article  PubMed  Google Scholar 

  24. Raparia K, Min SK, Mody DR, Anton R, Amrikachi M. Clinical outcomes for “suspicious” category in thyroid fine-needle aspiration biopsy: patient’s sex and nodule size are possible predictors of malignancy. Arch Pathol Lab Med. 2009;133:787–90.

    PubMed  Google Scholar 

  25. Banks ND, Kowalski J, Tsai HL, et al. A diagnostic predictor model for indeterminate or suspicious thyroid FNA samples. Thyroid. 2008;18:933–41.

    Article  PubMed  CAS  Google Scholar 

  26. Mathur A, Weng J, Moses W, et al. A prospective study evaluating the accuracy of using combined clinical factors and candidate diagnostic markers to refine the accuracy of thyroid fine needle aspiration biopsy. Surgery. 2010;148:1170–7.

    Article  PubMed  Google Scholar 

  27. Moses W, Weng J, Sansano I, et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg. 2010;34:2589–94.

    Article  PubMed  Google Scholar 

  28. Sapio MR, Posca D, Raggioli A, et al. Detection of RET/PTC, TRK and BRAF mutations in preoperative diagnosis of thyroid nodules with indeterminate cytological findings. Clin Endocrinol (Oxf). 2007;66:678–83.

    Article  CAS  Google Scholar 

  29. Pelizzo MR, Boschin IM, Barollo S, et al. BRAF analysis by fine needle aspiration biopsy of thyroid nodules improves preoperative identification of papillary thyroid carcinoma and represents a prognostic factor. A mono-institutional experience. Clin Chem Lab Med. 2011;49:325–9.

    Article  PubMed  CAS  Google Scholar 

  30. Nikiforova MN, Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid. 2009;19:1351–61.

    Article  PubMed  CAS  Google Scholar 

  31. Nikiforov YE, Steward DL, Robinson-Smith TM, et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J Clin Endocrinol Metab. 2009;94:2092–8.

    Article  PubMed  CAS  Google Scholar 

  32. Chen YT, Kitabayashi N, Zhou XK, Fahey TJ 3rd, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod Pathol. 2008;21:1139–46.

    Article  PubMed  CAS  Google Scholar 

  33. Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J Clin Endocrinol Metab. 2008;93:1600–8.

    Article  PubMed  CAS  Google Scholar 

  34. Pallante P, Visone R, Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr Relat Cancer. 2006;13:497–508.

    Article  PubMed  CAS  Google Scholar 

  35. Visone R, Pallante P, Vecchione A, et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007;26:7590–5.

    Article  PubMed  CAS  Google Scholar 

  36. Visone R, Russo L, Pallante P, et al. MicroRNAs (miR)-221 and miR-222, both overexpressed in human thyroid papillary carcinomas, regulate p27Kip1 protein levels and cell cycle. Endocr Relat Cancer. 2007;14:791–8.

    Article  PubMed  CAS  Google Scholar 

  37. Engels BM, Hutvagner G. Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene. 2006;25:6163–9.

    Article  PubMed  CAS  Google Scholar 

  38. Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27:5848–56.

    Article  PubMed  CAS  Google Scholar 

  39. Zimmerman AL, Wu S. MicroRNAs, cancer and cancer stem cells. Cancer Lett. 2011;300:10–9.

    Article  PubMed  CAS  Google Scholar 

  40. Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 2009;28:369–78.

    Article  PubMed  CAS  Google Scholar 

  41. Hammond SM. MicroRNAs as oncogenes. Curr Opin Genet Dev. 2006;16:4–9.

    Article  PubMed  CAS  Google Scholar 

  42. Hammond SM. MicroRNAs as tumor suppressors. Nat Genet. 2007;39:582–3.

    Article  PubMed  CAS  Google Scholar 

  43. Osada H, Takahashi T. let-7 and miR-17-92: small-sized major players in lung cancer development. Cancer Sci. 2011;102:9–17.

    Article  PubMed  CAS  Google Scholar 

  44. Meyer-Rochow GY, Jackson NE, Conaglen JV, et al. MicroRNA profiling of benign and malignant pheochromocytomas identifies novel diagnostic and therapeutic targets. Endocr Relat Cancer. 2010;17:835–46.

    Article  PubMed  CAS  Google Scholar 

  45. Feng R, Chen X, Yu Y, et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett. 2010;298:50–63.

    Article  PubMed  CAS  Google Scholar 

  46. He H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA. 2005;102:19075–80.

    Article  PubMed  CAS  Google Scholar 

  47. Sheu SY, Grabellus F, Schwertheim S, Worm K, Broecker-Preuss M, Schmid KW. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br J Cancer. 2010;102:376–82.

    Article  PubMed  CAS  Google Scholar 

  48. Tetzlaff MT, Liu A, Xu X, et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr Pathol. 2007;18:163–73.

    Article  PubMed  CAS  Google Scholar 

  49. Mazeh H, Mizrahi I, Halle D, et al. Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid. 2011;21:111–8.

    Article  PubMed  CAS  Google Scholar 

  50. Hamberger B, Gharib H, Melton LJ 3rd, Goellner JR, Zinsmeister AR. Fine-needle aspiration biopsy of thyroid nodules. Impact on thyroid practice and cost of care. Am J Med. 1982;73:381–4.

    Article  PubMed  CAS  Google Scholar 

  51. Castro MR, Gharib H. Thyroid fine-needle aspiration biopsy: progress, practice, and pitfalls. Endocr Pract. 2003;9:128–36.

    PubMed  Google Scholar 

  52. Hadi M, Gharib H, Goellner JR, Heerden JA. Has fine-needle aspiration biopsy changed thyroid practice? Endocr Pract. 1997;3:9–13.

    PubMed  CAS  Google Scholar 

  53. Nayar R, Ivanovic M. The indeterminate thyroid fine-needle aspiration: experience from an academic center using terminology similar to that proposed in the 2007 National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference. Cancer Cytopathol. 2009;117:195–202.

    Article  Google Scholar 

  54. Chou CK, Chen RF, Chou FF, et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid. 2010;20:489–94.

    Article  PubMed  CAS  Google Scholar 

  55. Li XM, Wang AM, Zhang J, Yi H. Down-regulation of miR-126 expression in colorectal cancer and its clinical significance. Med Oncol. 2010, Jul 31.

  56. Tavazoie SF, Alarcon C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 2008;451(7175):147–52.

    Article  PubMed  CAS  Google Scholar 

  57. Sun Y, Bai Y, Zhang F, Wang Y, Guo Y, Guo L. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun. 2010;391:1483–9.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang J, Du YY, Lin YF, et al. The cell growth suppressor, mir-126, targets IRS-1. Biochem Biophys Res Commun. 2008;377:136–40.

    Article  PubMed  CAS  Google Scholar 

  59. Liu B, Peng XC, Zheng XL, Wang J, Qin YW. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 2009;66:169–75.

    Article  PubMed  Google Scholar 

  60. Nikolic I, Plate KH, Schmidt MH. EGFL7 meets miRNA-126: an angiogenesis alliance. J Angiogenes Res. 2010;2:9.

    Article  PubMed  Google Scholar 

  61. Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun. 2009;379:726–31.

    Article  PubMed  CAS  Google Scholar 

  62. Fish JE, Srivastava D. MicroRNAs: opening a new vein in angiogenesis research. Sci Signal. 2009;2:pe1.

    Google Scholar 

  63. Kefas B, Godlewski J, Comeau L, et al. microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res. 2008;68:3566–72.

    Article  PubMed  CAS  Google Scholar 

  64. Chen H, Shalom-Feuerstein R, Riley J, et al. miR-7 and miR-214 are specifically expressed during neuroblastoma differentiation, cortical development and embryonic stem cells differentiation, and control neurite outgrowth in vitro. Biochem Biophys Res Commun. 2010;394:921–7.

    Article  PubMed  CAS  Google Scholar 

  65. Jiang L, Liu X, Chen Z, et al. MicroRNA-7 targets IGF1R (insulin-like growth factor 1 receptor) in tongue squamous cell carcinoma cells. Biochem J. 2010;432:199–205.

    Article  PubMed  CAS  Google Scholar 

  66. Reddy SD, Ohshiro K, Rayala SK, Kumar R. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions. Cancer Res. 2008;68:8195–200.

    Article  PubMed  CAS  Google Scholar 

  67. Chou YT, Lin HH, Lien YC, et al. EGFR promotes lung tumorigenesis by activating miR-7 through a Ras/ERK/Myc pathway that targets the Ets2 transcriptional repressor ERF. Cancer Res. 2010;70:8822–31.

    Article  PubMed  CAS  Google Scholar 

  68. Theoharis CG, Schofield KM, Hammers L, Udelsman R, Chhieng DC. The Bethesda thyroid fine-needle aspiration classification system: year 1 at an academic institution. Thyroid. 2009;19:1215–23.

    Article  PubMed  Google Scholar 

  69. Yang J, Schnadig V, Logrono R, Wasserman PG. Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer. 2007;111:306–15.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Electron Kebebew MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitano, M., Rahbari, R., Patterson, E.E. et al. Expression Profiling of Difficult-to-diagnose Thyroid Histologic Subtypes Shows Distinct Expression Profiles and Identify Candidate Diagnostic microRNAs. Ann Surg Oncol 18, 3443–3452 (2011). https://doi.org/10.1245/s10434-011-1766-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-011-1766-4

Keywords

Navigation