Skip to main content

Advertisement

Log in

Amelioration of Operation-Induced Suppression of Marginating Pulmonary NK Activity using Poly IC: A Potential Approach to Reduce Postoperative Metastasis

  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background and objectives

Pulmonary metastasis is a major cause of death in cases of operable cancer, and evidence suggests that postoperative immunosuppression contributes to this complication. In this study, we aimed to circumvent this risk and identify immunocytes critical in preventing pulmonary metastases.

Methods

F344 rats were treated with either vehicle or repeated low doses of poly I-C (0.2 mg/kg i.p., days 5, 3, and 1 preoperatively), a Th1-cytokine-inducing agent, then subjected or not to laparotomy. Using a non-immunogenic syngeneic mammary adenocarcinoma line (MADB106) we studied: (a) NK cytotoxicity (NKC) in marginating-pulmonary (MP) and in circulating leukocytes; (b) resistance to experimental lung metastasis; and (c) in vitro susceptibility of NKC to corticosterone and prostaglandin-E2, substances thought to mediate postoperative immunosuppression.

Results

MP but not circulating leukocytes showed significant NKC against MADB106 cells. Surgery suppressed this MP-NKC per NK cell and promoted MADB106 metastasis, and poly I-C treatment completely abolished both effects. Poly I-C quadrupled the numbers of MP-NK cells without causing apparent side effects, and protected MP-NKC from in vitro suppression by corticosterone and prostaglandin-E2.

Conclusions

MP-NK cells are unique in their ability to kill this apparently immunoresistant tumor. Low doses of synthetic ds-RNA (poly I-C), and potentially Th1 cytokines, can expand this MP-NK population and protect it from immunosuppression. The novelty of such a prophylactic approach is targeting the immediate postoperative period, which is characterized by high vulnerability to residual disease, and protecting critical anti-metastatic immunity against postoperative suppression. Testing such a potentially innocuous intervention in oncology patients preparing for surgery may reduce metastatic recurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4

Similar content being viewed by others

References

  1. Shakhar G, Ben-Eliyahu S. Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients? Ann Surg Oncol 2003; 10(8):972–992

    Article  PubMed  Google Scholar 

  2. Sietses C, Wiezer MJ, Eijsbouts QA, et al. A prospective randomized study of the systemic immune response after laparoscopic and conventional Nissen fundoplication. Surgery 1999; 126(1):5–9

    Article  PubMed  CAS  Google Scholar 

  3. Munford RS, Pugin J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am J Respir Crit Care Med 2001; 163(2):316–321

    PubMed  CAS  Google Scholar 

  4. Woiciechowsky C, Schoning B, Lanksch WR, et al. Mechanisms of brain-mediated systemic anti-inflammatory syndrome causing immunodepression. J Mol Med 1999; 77(11):769–780

    Article  PubMed  CAS  Google Scholar 

  5. Morton DL, Ollila DW, Hsueh EC, et al. Cytoreductive surgery and adjuvant immunotherapy: a new management paradigm for metastatic melanoma. CA Cancer J Clin 1999; 49(2):101–116, 65

    Article  PubMed  CAS  Google Scholar 

  6. Carter JJ, Whelan RL. The immunologic consequences of laparoscopy in oncology. Surg Oncol Clin N Am 2001; 10(3):655–677

    PubMed  CAS  Google Scholar 

  7. Ben-Eliyahu S, Page GG, Yirmiya R, Taylor AN. Acute alcohol intoxication suppresses natural killer cell activity and promotes tumor metastasis. Nat Med 1996; 2(4):457–460

    Article  PubMed  CAS  Google Scholar 

  8. Barlozzari T, Leonhardt J, Wiltrout RH, et al. Direct evidence for the role of LGL in the inhibition of experimental tumor metastases. J Immunol 1985; 134(4):2783–2789

    PubMed  CAS  Google Scholar 

  9. Shakhar G, Ben-Eliyahu S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol 1998; 160(7):3251–3258

    PubMed  CAS  Google Scholar 

  10. Ben-Eliyahu S, Page GG. In vivo assessment of natural killer cell activity in rats. Prog Neuroendocrineimmunol 1992; 5:199–214

    Google Scholar 

  11. Shingu K, Helfritz A, Kuhlmann S, et al. Kinetics of the early recruitment of leukocyte subsets at the sites of tumor cells in the lungs: natural killer (NK) cells rapidly attract monocytes but not lymphocytes in the surveillance of micrometastasis. Int J Cancer 2002; 99(1):74–81

    Article  PubMed  CAS  Google Scholar 

  12. Ben-Eliyahu S, Page GG, Yirmiya R, Shakhar G. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int J Cancer 1999; 80(6):880–888

    Article  PubMed  CAS  Google Scholar 

  13. Page GG, Blakely WP, Ben-Eliyahu S. Evidence that postoperative pain is a mediator of the tumor-promoting effects of surgery in rats. Pain 2001; 90(1–2):191–199

    Article  PubMed  CAS  Google Scholar 

  14. Bar-Yosef S, Melamed R, Page GG, et al. Attenuation of the tumor-promoting effect of surgery by spinal blockade in rats. Anesthesiology 2001; 94(6):1066–1073

    Article  PubMed  CAS  Google Scholar 

  15. Melamed R, Bar-Yosef S, Shakhar G, et al. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg 2003; 97(5):1331–1339

    Article  PubMed  CAS  Google Scholar 

  16. Ben-Eliyahu S, Shakhar G, Rosenne E, et al. Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: a role for adrenergic mechanisms. Anesthesiology 1999; 91(3):732–740

    Article  PubMed  CAS  Google Scholar 

  17. Melamed R, Rosenne E, Shakhar K, et al. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a beta-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun 2005; 19(2):114–126

    Article  PubMed  CAS  Google Scholar 

  18. Shakhar G, Blumenfeld B. Glucocorticoid involvement in suppression of NK activity following surgery in rats. J Neuroimmunol 2003; 138(1–2):83–91

    Article  PubMed  CAS  Google Scholar 

  19. Berguer R, Bravo N, Bowyer M, et al. Major surgery suppresses maximal production of helper T-cell type 1 cytokines without potentiating the release of helper T-cell type 2 cytokines. Arch Surg 1999; 134(5):540–544

    Article  PubMed  CAS  Google Scholar 

  20. Leung KH, Koren HS. Regulation of human natural killing. II. Protective effect of interferon on NK cells from suppression by PGE2. J Immunol 1982; 129(4):1742–1747

    PubMed  CAS  Google Scholar 

  21. Sone S, Fidler IJ. Activation of rat alveolar macrophages to the tumoricidal state in the presence of progressively growing pulmonary metastases. Cancer Res 1981; 41(6):2401–2406

    PubMed  CAS  Google Scholar 

  22. Shakhar G, Bar-Ziv I, Ben-Eliyahu S. Diurnal changes in lung tumor clearance and their relation to NK cell cytotoxicity in the blood and spleen. Int J Cancer 2001; 94(3):401–406

    Article  PubMed  CAS  Google Scholar 

  23. Ben-Eliyahu S, Page GG, Shakhar G, Taylor AN. Increased susceptibility to metastasis during pro-oestrus/oestrus in rats: possible role of oestradiol and natural killer cells. Br J Cancer 1996; 74(12):1900–1907

    PubMed  CAS  Google Scholar 

  24. Page GG, Ben-Eliyahu S, Liebeskind JC. The role of LGL/NK cells in surgery-induced promotion of metastasis and its attenuation by morphine. Brain Beh Immun 1994; 8(3):241–250

    Article  CAS  Google Scholar 

  25. Chambers WH, Brumfield AM, Hanley-Yanez K, et al. Functional heterogeneity between NKR-P1bright/Lycopersicon esculentum lectin (L.E.)bright and NKR-P1bright/L.E.dim subpopulations of rat natural killer cells. J Immunol 1992; 148(11):3658–3665

    PubMed  CAS  Google Scholar 

  26. Chambers WH, Vujanovic NL, DeLeo AB, et al. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med 1989; 169(4):1373–1389

    Article  PubMed  CAS  Google Scholar 

  27. Hochman PS, Cudkowicz G. Different sensitivities to hydrocortisone of natural killer cell activity and hybrid resistance to parental marrow grafts. J Immunol 1977; 119(6):2013–2015

    PubMed  CAS  Google Scholar 

  28. Brunda MJ, Herberman RB, Holden HT. Inhibition of murine natural killer cell activity by prostaglandins. J Immunol 1980; 124(6):2682–2687

    PubMed  CAS  Google Scholar 

  29. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll- like receptor 3. Nature 2001; 413(6857):732–738

    Article  PubMed  CAS  Google Scholar 

  30. Senik A, Gresser I, Maury C, et al. Enhancement by interferon of natural killer cell activity in mice. Cell Immunol 1979; 44(1):186–200

    Article  PubMed  CAS  Google Scholar 

  31. Lee CK, Rao DT, Gertner R, et al. Distinct requirements for IFNs and STAT1 in NK cell function. J Immunol 2000; 165(7):3571–3577

    PubMed  CAS  Google Scholar 

  32. Fuggetta MP, Graziani G, Aquino A, et al. Effect of hydrocortisone on human natural killer activity and its modulation by beta interferon. Int J Immunopharmacol 1988; 10(6):687–694

    Article  PubMed  CAS  Google Scholar 

  33. Avraham R, Schwartz Y, Rosenne E, et al. IL-12-based immunotherapy reduces post-surgery immunosuppression and metastasis, and increases survival from experimental leukemia. Psychoneuroimmunology Research Society, Vol. 18, Brain Behav Immun Titisee, Germany: Elsevier, 2004

    Google Scholar 

  34. Faist E, Schinkel C, Zimmer S. Update on the mechanisms of immune suppression of injury and immune modulation. World J Surg 1996; 20(4):454–459

    Article  PubMed  CAS  Google Scholar 

  35. Leung KH, Koren HS. Regulation of human natural killing. III. Mechanism for interferon induction of loss of susceptibility to suppression by cyclic AMP elevating agents. J Immunol 1984; 132(3):1445–1450

    PubMed  CAS  Google Scholar 

  36. Brittenden J, Heys SD, Ross J, Eremin O. Natural killer cells and cancer. Cancer 1996; 77(7):1226–1243

    Article  PubMed  CAS  Google Scholar 

  37. Salvadori S, Martinelli G, Zier K. Resection of solid tumors reverses T cell defects and restores protective immunity. J Immunol 2000; 164(4):2214–2220

    PubMed  CAS  Google Scholar 

  38. Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2(4):293–299

    Article  PubMed  CAS  Google Scholar 

  39. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 2001; 411(6835):380–384

    Article  PubMed  CAS  Google Scholar 

  40. Giantonio BJ, Hochster H, Blum R, et al. Toxicity and response evaluation of the interferon inducer poly ICLC administered at low dose in advanced renal carcinoma and relapsed or refractory lymphoma: a report of two clinical trials of the Eastern Cooperative Oncology Group. Invest New Drugs 2001; 19(1):89–92

    Article  PubMed  CAS  Google Scholar 

  41. Salazar AM, Levy HB, Ondra S, et al. Long-term treatment of malignant gliomas with intramuscularly administered polyinosinic-polycytidylic acid stabilized with polylysine and carboxymethylcellulose: an open pilot study. Neurosurgery 1996; 38(6):1096–1104

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by an NIH/NCI grant CA73056 and by a grant from the Israel Science Foundation (both granted to S. Ben-Eliyahu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shamgar Ben-Eliyahu PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shakhar, G., Abudarham, N., Melamed, R. et al. Amelioration of Operation-Induced Suppression of Marginating Pulmonary NK Activity using Poly IC: A Potential Approach to Reduce Postoperative Metastasis. Ann Surg Oncol 14, 841–852 (2007). https://doi.org/10.1245/s10434-006-9078-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-006-9078-9

Keywords

Navigation