1932

Abstract

Secreted proteins play important roles in mediating various biological processes such as cell–cell communication, differentiation, migration, and homeostasis at the population or tissue level. Here, we review bioanalytical technologies and devices for detecting protein secretions from single cells. We begin by discussing conventional approaches followed by detailing the latest advances in microengineered systems for detecting single-cell protein secretions with an emphasis on multiplex measurement. These platforms include droplet microfluidics, micro-/nanowell-based assays, and microchamber-based assays, among which the advantages and limitations are compared. Microscale systems also enable the tracking of protein secretion dynamics in single cells, further empowering the study of the cell–cell communication network. Looking forward, we discuss the remaining challenges and future opportunities that will transform basic research of cellular secretion functions at the systems level and the clinical applications for immune monitoring and cancer treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061318-115055
2019-06-12
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ac/12/1/annurev-anchem-061318-115055.html?itemId=/content/journals/10.1146/annurev-anchem-061318-115055&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kim M-S, Pinto SM, Getnet D, Nirujogi RS, Manda SS et al. 2014. A draft map of the human proteome. Nature 509:7502575–81
    [Google Scholar]
  2. 2.
    Frauenfelder H, McMahon B. 1998. Dynamics and function of proteins: the search for general concepts. PNAS 95:94795–97
    [Google Scholar]
  3. 3.
    Benham AM. 2012. Protein secretion and the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4:8a012872
    [Google Scholar]
  4. 4.
    Kang J, Der SD. 2004. Cytokine functions in the formative stages of a lymphocyte's life. Curr. Opin. Immunol. 16:2180–90
    [Google Scholar]
  5. 5.
    Paul WE, Seder RA. 1994. Lymphocyte responses and cytokines. Cell 76:2241–51
    [Google Scholar]
  6. 6.
    Sachdeva N, Asthana D. 2007. Cytokine quantitation: technologies and applications. Front. Biosci. 12:4682–95
    [Google Scholar]
  7. 7.
    Dranoff G. 2004. Cytokines in cancer pathogenesis and cancer therapy. Nat. Rev. Cancer 4:111–22
    [Google Scholar]
  8. 8.
    Wu M, Singh AK. 2012. Single-cell protein analysis. Curr. Opin. Biotechnol. 23:183–88
    [Google Scholar]
  9. 9.
    Perkins TJ, Swain PS. 2009. Strategies for cellular decision-making. Mol. Syst. Biol. 5:326
    [Google Scholar]
  10. 10.
    Heath JR, Ribas A, Mischel PS 2015. Single-cell analysis tools for drug discovery and development. Nat. Rev. Drug Discov. 15:3204–16
    [Google Scholar]
  11. 11.
    Yin H, Marshall D. 2012. Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 23:1110–19
    [Google Scholar]
  12. 12.
    Han Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC 2012. Polyfunctional responses by human T cells result from sequential release of cytokines. PNAS 109:51607–12
    [Google Scholar]
  13. 13.
    Xue Q, Bettini E, Paczkowski P, Ng C, Kaiser A et al. 2017. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J. Immunother. Cancer 5:185
    [Google Scholar]
  14. 14.
    Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B et al. 2018. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells associate with clinical outcomes in NHL. Blood 132:804–14
    [Google Scholar]
  15. 15.
    Perfetto SP, Chattopadhyay PK, Roederer M 2004. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol. 4:8648–55
    [Google Scholar]
  16. 16.
    Karlsson AC, Martin JN, Younger SR, Bredt BM, Epling L et al. 2003. Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J. Immunol. Methods 283:1–2141–53
    [Google Scholar]
  17. 17.
    Bonner WA, Hulett HR, Sweet RG, Herzenberg LA 1972. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43:3404–9
    [Google Scholar]
  18. 18.
    Streeck H, Frahm N, Walker BD 2009. The role of IFN-γ Elispot assay in HIV vaccine research. Nat. Protoc. 4:4461–69
    [Google Scholar]
  19. 19.
    Hulett HR, Bonner WA, Barrett J, Herzenberg LA 1969. Cell sorting: automated separation of mammalian cells as a function of intracellular fluorescence. Science 166:3906747–49
    [Google Scholar]
  20. 20.
    De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M 2001. 11-Color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function and T-cell receptor diversity. Nat. Med. 7:2245–48
    [Google Scholar]
  21. 21.
    Rabin RL, Roederer M, Maldonado Y, Petru A, Herzenberg LA, Herzenberg LA 1995. Altered representation of naive and memory CD8 T cell subsets in HIV-infected children. J. Clin. Investig. 95:52054–60
    [Google Scholar]
  22. 22.
    Douek DC, Brenchley JM, Betts MR, Ambrozak DR, Hill BJ et al. 2002. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417:688495–98
    [Google Scholar]
  23. 23.
    Hatzakis A, Touloumi G, Karanicolas R, Karafoulidou A, Mandalaki T et al. 2000. Effect of recent thymic emigrants on progression of HIV-1 disease. Lancet 355:9204599–604
    [Google Scholar]
  24. 24.
    Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø et al. 2004. Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell 118:2217–28
    [Google Scholar]
  25. 25.
    Kotecha N, Flores NJ, Irish JM, Simonds EF, Sakai DS et al. 2008. Single-cell profiling identifies aberrant STAT5 activation in myeloid malignancies with specific clinical and biologic correlates. Cancer Cell 14:4335–43
    [Google Scholar]
  26. 26.
    Hale MB, Krutzik PO, Samra SS, Crane JM, Nolan GP 2009. Stage dependent aberrant regulation of cytokine-STAT signaling in murine systemic lupus erythematosus. PLOS ONE 4:8e6756
    [Google Scholar]
  27. 27.
    Freer G, Rindi L. 2013. Intracellular cytokine detection by fluorescence-activated flow cytometry: basic principles and recent advances. Methods 61:130–38
    [Google Scholar]
  28. 28.
    Spiller DG, Wood CD, Rand DA, White MRH 2010. Measurement of single-cell dynamics. Nature 465:7299736–45
    [Google Scholar]
  29. 29.
    Yu J, Zhou J, Sutherland A, Wei W, Shin YS et al. 2014. Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu. Rev. Anal. Chem. 7:275–95
    [Google Scholar]
  30. 30.
    Wei W, Shin YS, Ma C, Wang J, Elitas M et al. 2013. Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Med 5:875
    [Google Scholar]
  31. 31.
    Liu Y, Singh AK. 2013. Microfluidic platforms for single-cell protein analysis. J. Lab. Autom. 18:6446–54
    [Google Scholar]
  32. 32.
    Zhao JL, Ma C, O'Connell RM, Mehta A, Diloreto R et al. 2014. Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14:4445–59
    [Google Scholar]
  33. 33.
    Yao X, Choudhury AD, Yamanaka YJ, Adalsteinsson VA, Gierahn TM et al. 2014. Functional analysis of single cells identifies a rare subset of circulating tumor cells with malignant traits. Integr. Biol. 6:4388–98
    [Google Scholar]
  34. 34.
    Dura B, Servos MM, Barry RM, Ploegh HL, Dougan SK, Voldman J 2016. Longitudinal multiparameter assay of lymphocyte interactions from onset by microfluidic cell pairing and culture. PNAS 113:26E3599–608
    [Google Scholar]
  35. 35.
    Satija R, Shalek AK. 2014. Heterogeneity in immune responses: from populations to single cells. Trends Immunol 35:5219–29
    [Google Scholar]
  36. 36.
    Kleppe M, Kwak M, Koppikar P, Riester M, Keller M et al. 2015. JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response. Cancer Discov 5:3316–31
    [Google Scholar]
  37. 37.
    Torres AJ, Hill AS, Love JC 2014. Nanowell-based immunoassays for measuring single-cell secretion: characterization of transport and surface binding. Anal. Chem. 86:2311562–69
    [Google Scholar]
  38. 38.
    Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL 2006. A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat. Biotechnol. 24:6703–7
    [Google Scholar]
  39. 39.
    Tam J, Song L, Walt D 2005. Fabrication and optical characterization of imaging fiber-based nanoarrays. Talanta 67:3498–502
    [Google Scholar]
  40. 40.
    Varadarajan N, Kwon DS, Law KM, Ogunniyi AO, Anahtar MN et al. 2012. Rapid, efficient functional characterization and recovery of HIV-specific human CD8+ T cells using microengraving. PNAS 109:103885–90
    [Google Scholar]
  41. 41.
    McWhorter FY, Smith TD, Luu TU, Rahim MK, Haun JB, Liu WF 2016. Macrophage secretion heterogeneity in engineered microenvironments revealed using a microwell platform. Integr. Biol. 8:7751–60
    [Google Scholar]
  42. 42.
    Chandrasekaran S, Giang U-BT, King MR, DeLouise LA 2011. Microenvironment induced spheroid to sheeting transition of immortalized human keratinocytes (HaCaT) cultured in microbubbles formed in polydimethylsiloxane. Biomaterials 32:297159–68
    [Google Scholar]
  43. 43.
    Zhu H, Stybayeva G, Macal M, Ramanculov E, George MD et al. 2008. A microdevice for multiplexed detection of T-cell-secreted cytokines. Lab Chip 8:122197–205
    [Google Scholar]
  44. 44.
    Jin A, Ozawa T, Tajiri K, Obata T, Kondo S et al. 2009. A rapid and efficient single-cell manipulation method for screening antigen-specific antibody-secreting cells from human peripheral blood. Nat. Med. 15:91088–92
    [Google Scholar]
  45. 45.
    Story CM, Papa E, Hu C-CA, Ronan JL, Herlihy K et al. 2008. Profiling antibody responses by multiparametric analysis of primary B cells. PNAS 105:4617902–7
    [Google Scholar]
  46. 46.
    Varadarajan N, Julg B, Yamanaka YJ, Chen H, Ogunniyi AO et al. 2011. A high-throughput single-cell analysis of human CD8+ T cell functions reveals discordance for cytokine secretion and cytolysis. J. Clin. Investig. 121:114322–31
    [Google Scholar]
  47. 47.
    Ogunniyi AO, Thomas BA, Politano TJ, Varadarajan N, Landais E et al. 2014. Profiling human antibody responses by integrated single-cell analysis. Vaccine 32:242866–73
    [Google Scholar]
  48. 48.
    Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B et al. 2011. A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat. Med. 17:6738–43
    [Google Scholar]
  49. 49.
    Konry T, Golberg A, Yarmush M 2013. Live single cell functional phenotyping in droplet nano-liter reactors. Sci. Rep. 3:13179
    [Google Scholar]
  50. 50.
    Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S et al. 2013. Probing cellular heterogeneity in cytokine-secreting immune cells using droplet-based microfluidics. Lab Chip 13:244740–44
    [Google Scholar]
  51. 51.
    Spitzer MH, Nolan GP. 2016. Mass cytometry: single cells, many features. Cell 165:4780–91
    [Google Scholar]
  52. 52.
    Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:6030687–96
    [Google Scholar]
  53. 53.
    Lu Y, Chen JJ, Mu L, Xue Q, Wu Y et al. 2013. High-throughput secretomic analysis of single cells to assess functional cellular heterogeneity. Anal. Chem. 85:42548–56
    [Google Scholar]
  54. 54.
    Xue M, Wei W, Su Y, Kim J, Shin YS et al. 2015. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137:124066–69
    [Google Scholar]
  55. 55.
    Shi Q, Qin L, Wei W, Geng F, Fan R et al. 2012. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. PNAS 109:2419–24
    [Google Scholar]
  56. 56.
    Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K et al. 2015. Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. PNAS 112:7E607–15
    [Google Scholar]
  57. 57.
    Xue Q, Lu Y, Eisele MR, Sulistijo ES, Khan N et al. 2015. Analysis of single-cell cytokine secretion reveals a role for paracrine signaling in coordinating macrophage responses to TLR4 stimulation. Sci. Signal. 8:381ra59
    [Google Scholar]
  58. 58.
    Chattopadhyay PK, Gierahn TM, Roederer M, Love JC 2014. Single-cell technologies for monitoring immune systems. Nat. Immunol. 15:2128–35
    [Google Scholar]
  59. 59.
    Zaretsky I, Polonsky M, Shifrut E, Reich-Zeliger S, Antebi Y et al. 2012. Monitoring the dynamics of primary T cell activation and differentiation using long term live cell imaging in microwell arrays. Lab Chip 12:235007–15
    [Google Scholar]
  60. 60.
    Rué P, Martinez Arias A 2015. Cell dynamics and gene expression control in tissue homeostasis and development. Mol. Syst. Biol. 11:1792
    [Google Scholar]
  61. 61.
    Shalek AK, Satija R, Shuga J, Trombetta JJ, Gennert D et al. 2014. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:7505363–69
    [Google Scholar]
  62. 62.
    Chen Z, Lu Y, Zhang K, Xiao Y, Lu J, Fan R 2019. Multiplexed, sequential secretion analysis of the same single cells reveals distinct effector response dynamics dependent on the initial basal state. Adv. Sci. https://doi.org/10.1002/advs.201801361
    [Crossref]
  63. 63.
    Junkin M, Kaestli AJ, Cheng Z, Jordi C, Albayrak C et al. 2016. High-content quantification of single-cell immune dynamics. Cell Rep 15:2411–22
    [Google Scholar]
  64. 64.
    Raphael MP, Christodoulides JA, Delehanty JB, Long JP, Byers JM 2013. Quantitative imaging of protein secretions from single cells in real time. Biophys. J. 105:3602–8
    [Google Scholar]
  65. 65.
    Shirasaki Y, Yamagishi M, Suzuki N, Izawa K, Nakahara A et al. 2015. Real-time single-cell imaging of protein secretion. Sci. Rep. 4:14736
    [Google Scholar]
  66. 66.
    Oh B-R, Huang N-T, Chen W, Seo JH, Chen P et al. 2014. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS Nano 8:32667–76
    [Google Scholar]
  67. 67.
    Batista FD, Dustin ML. 2013. Cell:cell interactions in the immune system. Immunol. Rev. 251:17–12
    [Google Scholar]
  68. 68.
    Kamińska K, Szczylik C, Bielecka ZF, Bartnik E, Porta C et al. 2015. The role of the cell-cell interactions in cancer progression. J. Cell. Mol. Med. 19:2283–96
    [Google Scholar]
  69. 69.
    Konry T, Sarkar S, Sabhachandani P, Cohen N 2016. Innovative tools and technology for analysis of single cells and cell–cell interaction. Annu. Rev. Biomed. Eng. 18:259–84
    [Google Scholar]
  70. 70.
    Lin B, Levchenko A. 2015. Spatial manipulation with microfluidics. Front. Bioeng. Biotechnol. 3:39
    [Google Scholar]
  71. 71.
    Wang J, Tham D, Wei W, Shin YS, Ma C et al. 2012. Quantitating cell–cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano. Lett. 12:126101–16
    [Google Scholar]
  72. 72.
    Elitas M, Brower K, Lu Y, Chen JJ, Fan R 2014. A microchip platform for interrogating tumor-macrophage paracrine signaling at the single-cell level. Lab Chip 14:183582–88
    [Google Scholar]
  73. 73.
    Wu Y, Lu Y, Chen W, Fu J, Fan R 2012. In silico experimentation of glioma microenvironment development and anti-tumor therapy. PLOS Comput. Biol. 8:2e1002355
    [Google Scholar]
  74. 74.
    Wu Y, Garmire LX, Fan R 2012. Inter-cellular signaling network reveals a mechanistic transition in tumor microenvironment. Integr. Biol. 4:121478
    [Google Scholar]
  75. 75.
    Di Carlo D, Wu LY, Lee LP 2006. Dynamic single cell culture array. Lab Chip 6:111445–49
    [Google Scholar]
  76. 76.
    Rosenthal A, Voldman J. 2005. Dielectrophoretic traps for single-particle patterning. Biophys. J. 88:32193–205
    [Google Scholar]
  77. 77.
    Valley JK, Ohta AT, Hsu H-Y, Neale SL, Jamshidi A, Wu MC 2009. Optoelectronic tweezers as a tool for parallel single-cell manipulation and stimulation. IEEE Trans. Biomed. Circuits Syst. 3:6424–31
    [Google Scholar]
  78. 78.
    Chiou PY, Ohta AT, Wu MC 2005. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436:7049370–72
    [Google Scholar]
  79. 79.
    Chung KP, Zeng Y. 2017. An overview of protein secretion in plant cells. Methods Mol. Biol. 1662:19–32
    [Google Scholar]
  80. 80.
    Green ER, Mecsas J. 2016. Bacterial secretion systems: an overview. Virulence Mechanisms of Bacterial Pathogens I Kudva, N Cornick, P Plummer, Q Zhang, T Nicholson et al.215–39 Washington, DC: ASM Press
    [Google Scholar]
  81. 81.
    Feizi A, Banaei-Esfahani A, Nielsen J 2015. HCSD: the human cancer secretome database. Database 2015:1 https://doi.org/10.1093/database/bav051
    [Crossref] [Google Scholar]
  82. 82.
    Schaaij-Visser TBM, de Wit M, Lam SW, Jiménez CR 2013. The cancer secretome, current status and opportunities in the lung, breast and colorectal cancer context. Biochim. Biophys. Acta Proteins Proteom. 1834:112242–58
    [Google Scholar]
  83. 83.
    Patel S, Wetie AGN, Darie CC, Clarkson BD 2014. Cancer secretomes and their place in supplementing other hallmarks of cancer. Adv. Exp. Med. Biol. 806:409–42
    [Google Scholar]
  84. 84.
    Lianidou ES. 2016. Gene expression profiling and DNA methylation analyses of CTCs. Mol. Oncol. 10:3431–42
    [Google Scholar]
  85. 85.
    Millner LM, Linder MW, Valdes R Jr 2013. Circulating tumor cells: a review of present methods and the need to identify heterogeneous phenotypes. Ann. Clin. Lab. Sci. 43:3295–304
    [Google Scholar]
  86. 86.
    Deng Y, Zhang Y, Sun S, Wang Z, Wang M et al. 2014. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci. Rep. 4:7499
    [Google Scholar]
  87. 87.
    Panagiotou V, Love KR, Jiang B, Nett J, Stadheim T, Love JC 2011. Generation and screening of Pichia pastoris strains with enhanced protein production by use of microengraving. Appl. Environ. Microbiol. 77:93154–56
    [Google Scholar]
  88. 88.
    Liao M-C, Muratore CR, Gierahn TM, Sullivan SE, Srikanth P et al. 2016. Single-cell detection of secreted Aβ and sAPPα from human IPSC-derived neurons and astrocytes. J. Neurosci. 36:51730–46
    [Google Scholar]
  89. 89.
    Song G, Shetty RM, Zhu H, Ashili S, Zhang L et al. 2013. Multiple sensor arrays for single cell metabolic analysis. 2013 IEEE International Conference on Sensors1–4 New York: IEEE
    [Google Scholar]
  90. 90.
    Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C 2014. Ten years of next-generation sequencing technology. Trends Genet 30:418–26
    [Google Scholar]
  91. 91.
    Prakadan SM, Shalek AK, Weitz DA 2017. Scaling by shrinking: empowering single-cell “omics” with microfluidic devices. Nat. Rev. Genet. 18:6345–61
    [Google Scholar]
  92. 92.
    Bock C, Farlik M, Sheffield NC 2016. Multi-omics of single cells: strategies and applications. Trends Biotechnol 34:8605–8
    [Google Scholar]
  93. 93.
    Packer J, Trapnell C. 2018. Single-cell multi-omics: an engine for new quantitative models of gene regulation. Trends Genet 34:9653–65
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061318-115055
Loading
/content/journals/10.1146/annurev-anchem-061318-115055
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error