Semin Liver Dis 2008; 28(2): 167-174
DOI: 10.1055/s-2008-1073116
© Thieme Medical Publishers

Acute Liver Failure: Mechanisms of Hepatocyte Injury and Regeneration

Anna Rutherford1 , Raymond T. Chung2
  • 1Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital, Boston, Massachusetts
  • 2Director of Hepatology, GI Unit, Massachusetts General Hospital, Boston, Massachusetts
Further Information

Publication History

Publication Date:
02 May 2008 (online)

ABSTRACT

Acute liver failure (ALF) occurs when the extent of hepatocyte death exceeds the liver's regenerative capacity. Despite vast differences in causes, the mode of cell death typically follows one of two patterns: necrosis or apoptosis. Necrosis and apoptosis have traditionally been considered separate entities within various etiologies of ALF; however, there is increasing evidence that they are alternative outcomes of the same initiating factors and signaling pathways, a process known as necroapoptosis. Here we review mechanisms of liver cell injury in ALF, including evolving knowledge of pathways leading to apoptosis, necrosis, and necroapoptosis, as well as how these pathways are potential therapeutic targets in ALF. We also discuss hepatic regeneration and the cytokines and growth factors involved in both the replication of differentiated hepatocytes as well as activation of intrahepatic progenitor cells, two pathways of hepatocyte regeneration that are dependent on the type and extent of hepatic insult in ALF.

REFERENCES

  • 1 Kaplowitz N. Mechanisms of liver cell injury.  J Hepatol. 2000;  32 39-47
  • 2 Kerr J F, Wyllie A H, Currie A R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics.  Br J Cancer. 1972;  26 239-257
  • 3 Riordan S M, Williams R. Mechanisms of hepatocyte injury, multiorgan failure, and prognostic criteria in acute liver failure.  Semin Liver Dis. 2003;  23 203-215
  • 4 Gujral J S, Knight T R, Farhood A, Bajt M L, Jaeschke H. Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis?.  Toxicol Sci. 2002;  67 322-328
  • 5 Kass G E, Macanas-Pirard P, Lee P C, Hinton R H. The role of apoptosis in acetaminophen-induced injury.  Ann N Y Acad Sci. 2003;  1010 557-559
  • 6 El-Hassan H, Anwar K, Macanas-Pirard P et al.. Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases.  Toxicol Appl Pharmacol. 2003;  191 118-129
  • 7 Kim J S, He L, Lemasters J J. Mitochondrial permeability transition: a common pathway to necrosis and apoptosis.  Biochem Biophys Res Commun. 2003;  304 463-470
  • 8 Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis.  Toxicol Lett. 1998;  102-103 139-142
  • 9 Gores G J, Herman B, Lemasters J J. Plasma membrane bleb formation and rupture: a common feature of hepatocellular injury.  Hepatology. 1990;  11 690-698
  • 10 Rosser B G, Gores G J. Liver cell necrosis: cellular mechanisms and clinical implications.  Gastroenterology. 1995;  108 252-275
  • 11 Jaeschke H, Lemasters J J. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury.  Gastroenterology. 2003;  125 1246-1257
  • 12 Kim J S, Qian T, Lemasters J J. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes.  Gastroenterology. 2003;  124 494-503
  • 13 Gujral J S, Bucci T J, Farhood A, Jaeschke H. Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis?.  Hepatology. 2001;  33 397-405
  • 14 Lemasters J J. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis.  Gastroenterology. 2005;  129 351-360
  • 15 Sodeman T, Bronk S F, Roberts P J, Miyoshi H, Gores G J. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas.  Am J Physiol Gastrointest Liver Physiol. 2000;  278 G992-G999
  • 16 Galle P R, Hofmann W J, Walczak H et al.. Involvement of the CD95 (APO-1/Fas) receptor and ligand in liver damage.  J Exp Med. 1995;  182 1223-1230
  • 17 Lacronique V, Mignon A, Fabre M et al.. Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice.  Nat Med. 1996;  2 80-86
  • 18 Ryo K, Kamogawa Y, Ikeda I et al.. Significance of Fas antigen-mediated apoptosis in human fulminant hepatic failure.  Am J Gastroenterol. 2000;  95 2047-2055
  • 19 Strand S, Hofmann W J, Grambihler A et al.. Hepatic failure and liver cell damage in acute Wilson's disease involve CD95 (APO-1/Fas)-mediated apoptosis.  Nat Med. 1998;  4 588-593
  • 20 Strand S, Strand D, Seufert R et al.. Placenta-derived CD95 ligand causes liver damage in hemolysis, elevated liver enzymes, and low platelet count syndrome.  Gastroenterology. 2004;  126 849-858
  • 21 Tagami A, Ohnishi H, Moriwaki H, Phillips M, Hughes R D. Fas-mediated apoptosis in acute alcoholic hepatitis.  Hepatogastroenterology. 2003;  50 443-448
  • 22 Tagami A, Ohnishi H, Hughes R D. Increased serum soluble Fas in patients with acute liver failure due to paracetamol overdose.  Hepatogastroenterology. 2003;  50 742-745
  • 23 Rutherford A E, Hynan L S, Borges C B et al.. Serum apoptosis markers in acute liver failure: a pilot study.  Clin Gastroenterol Hepatol. 2007;  5 1477-1483
  • 24 Kosai K, Matsumoto K, Nagata S, Tsujimoto Y, Nakamura T. Abrogation of Fas-induced fulminant hepatic failure in mice by hepatocyte growth factor.  Biochem Biophys Res Commun. 1998;  244 683-690
  • 25 Bajt M L, Lawson J A, Vonderfecht S L, Gujral J S, Jaeschke H. Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: evidence for a postmitochondrial processing of caspase-8.  Toxicol Sci. 2000;  58 109-117
  • 26 Reinhard C, Shamoon B, Shyamala V, Williams L T. Tumor necrosis factor-alpha-induced activation of c-jun N-terminal kinase is mediated by TRAF2.  EMBO J. 1997;  16 1080-1092
  • 27 Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. Reactive oxygen species promote TNF-alpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases.  Cell. 2005;  120 649-661
  • 28 Streetz K, Leifeld L, Grundmann D et al.. Tumor necrosis factor-alpha in the pathogenesis of human and murine fulminant hepatic failure.  Gastroenterology. 2000;  119 446-460
  • 29 Rudiger H A, Clavien P A. Tumor necrosis factor alpha, but not Fas, mediates hepatocellular apoptosis in the murine ischemic liver.  Gastroenterology. 2002;  122 202-210
  • 30 Spahr L, Giostra E, Frossard J L, Bresson-Hadni S, Rubbia-Brandt L, Hadengue A. Soluble TNF-R1, but not tumor necrosis factor alpha, predicts the 3-month mortality in patients with alcoholic hepatitis.  J Hepatol. 2004;  41 229-234
  • 31 Mundt B, Kuhnel F, Zender L et al.. Involvement of TRAIL and its receptors in viral hepatitis.  FASEB J. 2003;  17 94-96
  • 32 Mundt B, Wirth T, Zender L et al.. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) induces hepatic steatosis in viral hepatitis and after alcohol intake.  Gut. 2005;  54 1590-1596
  • 33 Hao C, Song J H, Hsi B et al.. TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice.  Cancer Res. 2004;  64 8502-8506
  • 34 Richter C, Schweizer M, Cossarizza A, Franceschi C. Control of apoptosis by the cellular ATP level.  FEBS Lett. 1996;  378 107-110
  • 35 Gasbarrini A, Rapaccini G L, Rutella S et al.. Rescue therapy by portal infusion of autologous stem cells in a case of drug-induced hepatitis.  Dig Liver Dis. 2007;  39 878-882
  • 36 Kon K, Kim J S, Jaeschke H, Lemasters J J. Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes.  Hepatology. 2004;  40 1170-1179
  • 37 Kon K, Ikejima K, Okumura K et al.. Role of apoptosis in acetaminophen hepatotoxicity.  J Gastroenterol Hepatol. 2007;  22(suppl 1) S49-S52
  • 38 Becker E P, Sun D, Minuk G Y. Exogenous adenosine 5′-triphosphate does not improve survival in rats with acute liver failure.  Dig Dis Sci. 2007;  , October 13 (Epub ahead of print)
  • 39 Kim K M, Kim Y M, Park M et al.. A broad-spectrum caspase inhibitor blocks concanavalin A-induced hepatitis in mice.  Clin Immunol. 2000;  97 221-233
  • 40 Yoshida N, Iwata H, Yamada T et al.. Improvement of the survival rate after rat massive hepatectomy due to the reduction of apoptosis by caspase inhibitor.  J Gastroenterol Hepatol. 2007;  22 2015-2021
  • 41 Chu H C, Lin Y L, Sytwu H K, Lin S H, Liao C L, Chao Y C. Effects of minocycline on Fas-mediated fulminant hepatitis in mice.  Br J Pharmacol. 2005;  144 275-282
  • 42 Kosai K, Matsumoto K, Funakoshi H, Nakamura T. Hepatocyte growth factor prevents endotoxin-induced lethal hepatic failure in mice.  Hepatology. 1999;  30 151-159
  • 43 Cazanave S, Berson A, Haouzi D et al.. High hepatic glutathione stores alleviate Fas-induced apoptosis in mice.  J Hepatol. 2007;  46 858-868
  • 44 Lee W M, Rossaro L, Fontana R J et al.. Intravenous N-acetylcysteine improves spontaneous survival in early stage non-acetaminophen acute liver failure.  Hepatology. 2007;  46 (suppl) 268A
  • 45 Fausto N, Campbell J S, Riehle K J. Liver regeneration.  Hepatology. 2006;  43 S45-S53
  • 46 Fausto N. Liver regeneration and repair: hepatocytes, progenitor cells, and stem cells.  Hepatology. 2004;  39 1477-1487
  • 47 Dahlke M H, Popp F C, Bahlmann F H et al.. Liver regeneration in a retrorsine/CCl4-induced acute liver failure model: do bone marrow-derived cells contribute?.  J Hepatol. 2003;  39 365-373
  • 48 Di Campli C, Piscaglia A C, Giuliante F et al.. No evidence of hematopoietic stem cell mobilization in patients submitted to hepatectomy or in patients with acute-on-chronic liver failure.  Transplant Proc. 2005;  37 2563-2566
  • 49 Liu Z C, Chang T M. Transplantation of bioencapsulated bone marrow stem cells improves hepatic regeneration and survival of 90% hepatectomized rats: a preliminary report.  Artif Cells Blood Substit Immobil Biotechnol. 2005;  33 405-410
  • 50 Okumoto K, Saito T, Onodera M et al.. Serum levels of stem cell factor and thrombopoietin are markedly decreased in fulminant hepatic failure patients with a poor prognosis.  J Gastroenterol Hepatol. 2007;  22 1265-1270
  • 51 Webber E M, Bruix J, Pierce R H, Fausto N. Tumor necrosis factor primes hepatocytes for DNA replication in the rat.  Hepatology. 1998;  28 1226-1234
  • 52 Argast G M, Campbell J S, Brooling J T, Fausto N. Epidermal growth factor receptor transactivation mediates tumor necrosis factor-induced hepatocyte replication.  J Biol Chem. 2004;  279 34530-34536
  • 53 Hecht N, Pappo O, Shouval D, Rose-John S, Galun E, Axelrod J H. Hyper-IL-6 gene therapy reverses fulminant hepatic failure.  Mol Ther. 2001;  3 683-687
  • 54 Aw M M, Mitry R R, Hughes R D, Dhawan A. Serum hepatocyte growth factor and vascular endothelial growth factor in children with acute liver failure.  J Pediatr Gastroenterol Nutr. 2007;  44 224-227
  • 55 Eguchi S, Yanaga K, Okudaira S et al.. Changes in serum levels of hepatocyte growth factor in patients undergoing adult-to-adult living-donor liver transplantation.  Transplantation. 2003;  76 1769-1770
  • 56 Lowes K N, Croager E J, Olynyk J K, Abraham L J, Yeoh G C. Oval cell-mediated liver regeneration: role of cytokines and growth factors.  J Gastroenterol Hepatol. 2003;  18 4-12
  • 57 Nguyen L N, Furuya M H, Wolfraim L A et al.. Transforming growth factor-beta differentially regulates oval cell and hepatocyte proliferation.  Hepatology. 2007;  45 31-41
  • 58 Brooling J T, Campbell J S, Mitchell C, Yeoh G C, Fausto N. Differential regulation of rodent hepatocyte and oval cell proliferation by interferon gamma.  Hepatology. 2005;  41 906-915
  • 59 Katoonizadeh A, Nevens F, Verslype C, Pirenne J, Roskams T. Liver regeneration in acute severe liver impairment: a clinicopathological correlation study.  Liver Int. 2006;  26 1225-1233
  • 60 Quiros-Tejeira R E, Molina R A, Katzir L et al.. Resolution of hypophosphatemia is associated with recovery of hepatic function in children with fulminant hepatic failure.  Transpl Int. 2005;  18 1061-1066
  • 61 Schmidt L E, Dalhoff K. Serum phosphate is an early predictor of outcome in severe acetaminophen-induced hepatotoxicity.  Hepatology. 2002;  36 659-665
  • 62 Donahower B, McCullough S S, Kurten R et al.. Vascular endothelial growth factor and hepatocyte regeneration in acetaminophen toxicity.  Am J Physiol Gastrointest Liver Physiol. 2006;  291 G102-G109
  • 63 Marino G, Piazzese E, Gruttadauria S et al.. New model of liver regeneration induced through use of vascular endothelial growth factor.  Transplant Proc. 2006;  38 1193-1194
  • 64 Namisaki T, Yoshiji H, Kojima H et al.. Salvage effect of the vascular endothelial growth factor on chemically induced acute severe liver injury in rats.  J Hepatol. 2006;  44 568-575
  • 65 Malik R, Saich R, Rahman T, Hodgson H. During thioacetamide-induced acute liver failure, the proliferative response of hepatocytes to thyroid hormone is maintained, indicating a potential therapeutic approach to toxin-induced liver disease.  Dig Dis Sci. 2006;  51 2235-2241
  • 66 Oren R, Resnick M B, Brill S et al.. Thyroxine accelerates proliferation of injured liver cells.  J Hepatol. 1998;  29 634-637
  • 67 Lesurtel M, Graf R, Aleil B et al.. Platelet-derived serotonin mediates liver regeneration.  Science. 2006;  312 104-107
  • 68 Papadimas G K, Tzirogiannis K N, Panoutsopoulos G I et al.. Effect of serotonin receptor 2 blockage on liver regeneration after partial hepatectomy in the rat liver.  Liver Int. 2006;  26 352-361

Anna RutherfordM.D. M.P.H. 

Staff Physician, Division of Gastroenterology, Hepatology, and Endoscopy, Brigham and Women's Hospital

75 Francis Street, Boston, MA 02115

Email: ARutherford@partners.org

    >