Planta Med 2007; 73(2): 103-115
DOI: 10.1055/s-2007-967104
Review
© Georg Thieme Verlag KG Stuttgart · New York

Fungal Genetics, Genomics, and Secondary Metabolites in Pharmaceutical Sciences

Mathias Misiek1 , Dirk Hoffmeister1
  • 1Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-University Freiburg, Germany
Further Information

Publication History

Received: September 29, 2006

Accepted: December 17, 2006

Publication Date:
23 January 2007 (online)

Abstract

Filamentous fungi produce a plethora of bioactive natural products. These metabolites display a broad range of useful activities for pharmaceutical purposes, exemplified best by the antibiotic penicillin. Yet, many more have been isolated, characterised, and tested, and some have made their way in clinical trials and into pharmaceutical practice. Through genomics, we become increasingly aware that the biosynthetic abilities for natural products are much richer than expected. The first part of our review highlights selected metabolites that filamentous fungi offer to pharmacists for drug development. This is followed by a summary on the potential of fungal genetics and genomics for pharmaceutical sciences and natural product research.

References

  • 1 Koehn F E, Carter G T. The evolving role of natural products in drug discovery.  Nat Rev Drug Discov. 2005;  4 206-20.
  • 2 Turner W B, Aldridge D C. Fungal metabolites II. London and New York; Academic Press 1983.
  • 3 Cole R J, Schweickert M A. Handbook of secondary fungal metabolites. Vol. 1 - 3. London; Academic Press 2003.
  • 4 Wasson R G, Hofmann A, Ruck C AP. The road to Eleusis, 2nd edition. Los Angeles; Hermes Press 1998.
  • 5 Hardman J G, Limbird L E. The pharmacological basis of therapeutics, 10th edition. Goodman and Gilman's London; McGraw-Hill 2002.
  • 6 Demain A L, Elander R P. The beta-lactam antibiotics: past, present, and future.  . 1999;  75 5-19.
  • 7 Schardl C L, Panaccione D G, Tudzynski P. Ergot alkaloids - biology and molecular biology.  Alkaloids. 2006;  3 45-86.
  • 8 Tobert J A. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors.  Nat Rev Drug Discov. 2003;  2 517-26.
  • 9 Berth-Jones J. The use of ciclosporin in psoriasis.  J Dermatol Treat. 2005;  16 258-77.
  • 10 Rogers T R. Antifungal drug resistance: limited data, dramatic impact?.  Int J Antimicrob Agents. 2006;  27S S7-11.
  • 11 Vicente M F, Basilio A, Cabello A, Peláez F. Microbial natural products as a source of antifungals.  Clin Microbiol Infect. 2003;  9 15-32.
  • 12 Odds F C, Brown A JP, Gow N AR. Antifungal agents: mechanisms of action.  Trends Microbiol. 2003;  11 272-9.
  • 13 Nyfelder R, Keller S W. Metabolites of microorganisms, 143: echinocandin B, a novel polypeptide-antibiotic from Aspergillus nidulans var. echinulatus-isolation and structural components.  Helv Chim Acta. 1974;  57 2459-77.
  • 14 Letscher-Bru V, Herbrecht R. Caspofungin: the first representative of a new antifungal class.  J Antimicrob Chemother. 2003;  51 513-21.
  • 15 Raasch R H. Anidulafungin: review of a new echinocandin antifungal agent.  Expert Rev Anti Infect Ther. 2004;  2 499-508.
  • 16 Vasquez J A, Sobel J D. Anidulafungin: a novel echinocandin.  Clin Infect Dis. 2006;  43 215-22.
  • 17 Zaas A K, Steinbach W J. Micafungin: the US perspective.  Expert Rev Anti Infect Ther. 2005;  3 183-90.
  • 18 de Wet N T, Bester A J, Viljoen J J, Filho F, Suleiman J M, Ticona E. et al . A randomized, double blind, comparative trial of micafungin (FK463) vs. fluconazole for the treatment of oesophagial candidasis.  Aliment Pharmacol Ther. 2005;  21 899-907.
  • 19 Krause D S, Simjee A E, van Rensburg C, Viljoen J, Walsh T J, Goldstein B P. et al . A randomized, double-blind trial of anidulafungin versus fluconazole for the treatment of esophageal candidasis.  Clin Infect Dis. 2004;  39 770-5.
  • 20 Arathoon E G, Gotuzzo E, Noriega L M, Berman R S, DiNubile M J, Sable C A. Randomized, double blind, multicenter study of caspofungin versus amphotericin B in treatment of oropharyngeal and esophageal candidasis.  Antimicrob Agents Chemother. 2002;  46 451-7.
  • 21 Denning D W. Echinocandin antifungal drugs.  Lancet. 2003;  362 1142-51.
  • 22 Zaas A K, Alexander B D. Echinocandins: role in antifungal therapy.  Expert Opin Pharmacother. 2005;  6 1657-68.
  • 23 Turner M S, Drew R H, Perfect J R. Emerging echinocandins for treatment of invasive fungal infections.  Expert Opin Emerg Drugs. 2006;  11 231-50.
  • 24 Moore C B, Oakley K L, Denning D W. In vitro activity of a new echinocandin, LY303366, and comparison with fluconazole, flucytosine and amphotericin B against Candida species.  Clin Microbiol Infect. 2001;  7 11-6.
  • 25 Kurtz M B, Heath I B, Marrinan J, Dreikorn S, Onishi J, Douglas C. Morphological effects of lipopeptides against Aspergillus fumigatus correlate with activities against (1,3)-β-D-glucan synthase.  Antimicrob Agents Chemother. 1994;  38 1480-9.
  • 26 Kurtz M B, Abruzzo G, Flattery A, Bartizal K, Marrinan J, Li W. et al . Characterization of echinocandin-resistant mutants of Candida albicans: genetic, biochemical, and virulence studies.  Infect Immun. 1996;  64 3244-51.
  • 27 Odds F C. Sordarin antifungal agents.  Expert Opin Ther Patents. 2001;  11 283-94.
  • 28 Dominguez J M, Martin J J. Sordarins: inhibitors of fungal elongation factor-2. In: An Z, editor Handbook of industrial mycology. New York; Marcel Dekker 2004: 335-53.
  • 29 Hauser D, Sigg H P. Isolierung und Abbau von Sordarin.  Helv Chim Acta. 1971;  54 1178-90.
  • 30 Dominguez J M, Kelly V A, Kinsman O S, Marriott M S, Gómez de las Heras F, Martin J J. Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts.  Antimicrob Agents Chemother. 1998;  42 2274-8.
  • 31 Herreros E, Almela M J, Lozano S, Gómez de las Heras F, Gargallo-Viola D. Antifungal activities and cytotoxicity studies of six new azasordarins.  Antimicrob Agents Chemother. 2001;  45 3132-9.
  • 32 Basilio A, Justice M, Harris G, Bills G, Collado J, de la Cruz M. et al . The discovery of moriniafungin, a novel sordarin derivative produced by Morinia pestalozzioides .  Bioorg Med Chem. 2006;  14 560-6.
  • 33 Dominguez J M, Martin J J. Identification of Elongation Factor 2 as the essential protein targeted by Sordarins in Candida albicans .  Antimicrob Agents Chemother. 1998;  42 2279-83.
  • 34 Jimenez E, Martinez A, Aliouat E M, Caballero J, Dei-Cas E, Gargallo-Viola D. Therapeutic efficacies of GW471552 and GW471558, two new azasordarin derivatives, against pneumocystosis in two immunosuppressed-rat models.  Antimicrob Agents Chemother. 2002;  46 2648-50.
  • 35 Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S. Antifungal activities of R-135 853, a sordarin derivative, in experimental candidiasis in mice.  Antimicrob Agents Chemother. 2005;  49 52-6.
  • 36 Hunt E. Pleuromutilin Antibiotics Drugs.  Future. 2000;  25 1163-8.
  • 37 Schlünzen F, Pyetan E, Fucini P, Yonath A, Harms J M. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin.  Mol Microbiol. 2004;  54 1287-94.
  • 38 Long K S, Hansen L H, Jakobsen L, Vester B. Interaction of pleuromutilin derivatives with the ribosomal peptidyl transferase center.  Antimicrob Agents Chemother. 2006;  50 1458-62.
  • 39 Jones R N, Fritsche T R, Sader H S, Ross J E. Activity of retapamulin (SB-275 833), a novel pleuromutilin, against selected resistant gram-positive cocci.  Antimicrob Agents Chemother. 2006;  50 2583-6.
  • 40 Pankuch G A, Lin G, Hoellman D B, Good C E, Jacobs M R, Appelbaum P C. Activity of retapamulin against Streptococcus pyogenes and Staphylococcus aureus evaluated by agar dilution, microdilution, E-test, and disk diffusion methodologies.  Antimicrob Agents Chemother. 2006;  50 1727-30.
  • 41 Free A, Roth E, Dalessandro M, Hiram J, Scangarella N, Shawar R. et al . Retapamulin ointment twice daily for 5 days vs oral cephalexin twice daily for 10 days for empiric treatment of secondarily infected traumatic lesions of the skin.  Skinmed. 2006;  5 224-32.
  • 42 Parish L C, Jorizzo J L, Breton J J, Hirman J W, Scangarella N E, Shawar R M. et al . (On behalf of the SB275833/032 study team.) Topical retapamulin ointment (1 %, wt/wt) twice daily for 5 days versus oral cephalexin twice daily for 10 days in the treatment of secondarily infected dermatitis: Results of a randomized controlled trial.  J Am Acad Dermatol. 2006;  55 1006-16.
  • 43 Cullough J E, Muller M T, Howells A J, Maxwell A, O’Sullivan J, Summerill R S. et al . Clerocidin, a terpenoid antibiotic, inhibits bacterial DNA gyrase.  J Antibiot. 1993;  46 526-30.
  • 44 Richter S N, Leo E, Giaretta G, Gatto B, Fischer L M, Palumbo M. Clerocidin interacts with the cleavage complex of Streptococcus pneumoniae topoisomerase IV to induce selective irreversible DNA damage.  Nucleic Acids Res. 2006;  34 1982-91.
  • 45 Mygind P H, Fischer R L, Schnorr K M, Mogens T H, Sönksen C P, Ludvigsen S. et al . Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus.  Nature. 2005;  437 975-80.
  • 46 Park Y, Hahm K S. Antimicrobial peptides (AMPs): peptide structure and mode of action.  J Biochem Mol Biol. 2005;  38 507-16.
  • 47 Raventós D, Taboureau O, Mygind P H, Nielsen J D, Sonksen C P, Kristensen H H. Improving on nature's defenses: optimization & high throughput screening of antimicrobial peptides.  Comb Chem High Throughput Screen. 2005;  8 219-33.
  • 48 Pommier Y, Johnson A A, Marchand C. Integrase inhibitors to treat HIV/AIDS.  Nat Rev Drug Discov. 2005;  4 236-48.
  • 49 Lataillade M, Kozal M J. The hunt for HIV-1 integrase inhibitors.  AIDS Patient Care STDS. 2006;  20 489-501.
  • 50 Herath K B, Jayasuriya H, Bills G F, Polishook J D, Dombrowski A W, Guan Z. et al . Isolation, structure, absolute stereochemistry, and HIV-1 integrase inhibitory activity of integrasone, a novel fungal polyketide.  J Nat Prod. 2004;  67 872-4.
  • 51 Singh S B, Pelaez F, Hazuda D J, Lingham R B. Discovery of natural product inhibitors of HIV-1 integrase at Merck.  Drugs Future. 2005;  30 277-99.
  • 52 Marchand C, Johnson A, Karki R G, Pais G CG, Zhang X, Cowansage K. et al . Metal-dependent inhibition of HIV-1 integrase by β-diketo acids and resistance of the soluble double-mutant (F185K/C280S).  Mol Pharmacol. 2003;  64 600-9.
  • 53 Sakamoto H, Okamoto K, Aoki M, Kato H, Katsume A, Ohta A. Host sphingolipid biosynthesis as a target for hepatitis C virus therapy.  Nat Chem Biol. 2005;  1 333-7.
  • 54 McMorris T C, Elayadi A N, Yu J, Hu Y, Kelner M J. Metabolism of antitumor hydroxymethylacylfulvene by rat liver cytosol.  Drug Metab Dispos. 1999;  27 983-5.
  • 55 McMorris T C, Elayadi A N, Yu J, Kelner M J. Metabolism of antitumor acylfulvene by rat liver cytosol.  Biochem Pharmacol. 1999;  57 83-8.
  • 56 McMorris T C, Yu J, Lira R, Dawe R, MacDonald J R, Waters S J. et al . Structure-activity studies of antitumor agent irofulvene (hydroxymethylacylfulvene) and analogues.  J Org Chem. 2001;  66 6158-63.
  • 57 Gregerson L N, McMorris T C, Siegel J S, Baldridge K K. Ab initio structure/reactivity investigations of illudin-based antitumor agents: a model for reaction in vivo .  Helv Chim Acta. 2003;  86 4133-51.
  • 58 Kelner M J, McMorris T C, Taetle R. Preclinical evaluation of illudins as anticancer agents: basis for selective cytotoxity.  J Natl Cancer Inst. 1990;  82 1562-5.
  • 59 Seiden M V, Gordon A N, Bodurka D C, Matulonis U A, Penson R T, Reed E. et al . A phase II study of irofulvene in women with recurrent and heavily pretreated ovarian cancer.  Gynecol Oncol. 2006;  101 55-61.
  • 60 Senzer N, Arsenau J, Richards D, Berman B, MacDonald J R, Smith S. Irofulven demonstrates clinical activity against metastatic hormone-refractory prostate cancer in a phase 2 single-agent trial.  Am J Clin Oncol. 2005;  28 36-41.
  • 61 Bomgaars L R, Megason G C, Pullen J, Langevin A M, Weitman S D, Hershon L. et al . Phase I trial of irofulven (MG 114) in pediatric patients with solid tumors.  Pediatr Blood Cancer. 2006;  47 163-8.
  • 62 Serova M, Calvo F, Lokiec F, Koeppel F, Poindessous V, Larsen A K. et al . Characterizations of irofulven cytotoxity in combination with cisplatin and oxaliplatin in human colon, breast, and ovarian cancer cells.  Cancer Chemother Pharmacol. 2006;  57 491-9.
  • 63 Van Laar E S, Roth S, Weitman S, MacDonald J R, Waters S J. Activity of irofulven against human pancreatic carcinoma cell lines in vitro and in vivo .  Anticancer Res. 2004;  24 59-65.
  • 64 Zhang Y, Yeh J R, Mara A, Ju R, Hines J F, Cirone P. et al . A chemical and genetic approach to the mode of action of fumagillin.  Chem Biol. 2006;  13 1001-9.
  • 65 Lu J, Chong C R, Hu X, Liu J O. Fumarranol, a rearranged fumagillin analogue that inhibits angiogenesis in vivo .  J Med Chem. 2006;  49 5645-8.
  • 66 Bernier S G, Lazarus D D, Clark E, Doyle B, Labenski M T, Thompson C D. et al . A methionine aminopeptidase-2 inhibitor, PPI-2458, for the treatment of rheumatoid arthritis.  Proc Natl Acad Sci USA. 2004;  101 0768-73.
  • 67 Didier P J, Phillips J N, Kuebler D J, Nasr M, Brindley P J, Stovall M E. et al . Antimicrosporidial activities of fumagillin, TNP-470, ovalicin, and ovalicin derivatives in vitro and in vivo .  Antimicrob Agents Chemother. 2006;  50 2146-55.
  • 68 Usui T, Kondoh M, Cui C B, Mayumi T, Osada H. Tryprostatin A, a specific and novel inhibitor of microtubule assembly.  Biochem J. 1998;  333 543-8.
  • 69 Zhao S, Smith K S, Deveau A M, Dieckhaus C M, Johnson M A, Macdonald T L. et al . Biological activity of the tryprostatins and their diastereomers on human carcinoma cell lines.  J Med Chem. 2002;  45 1559-62.
  • 70 Rabindran S K, Ross D D, Doyle L A, Yang W, Greenberger L M. Fumitremorgin C reverses multidrug resistance in cells transfected with the breast cancer resistance protein.  Cancer Res. 2000;  60 7-50.
  • 71 Yamamoto Y, Nishimura K I, Kiriyama N. Studies on the metabolic products of Aspergillus terreus. I. Metabolites of the strain IFO 6123.  Chem Pharm Bull. 1976;  24 853-9.
  • 72 Yamamoto Y, Kiriyama N, Shimizu S, Koshimura S. Antitumor activity of asterriquinone, a metabolic product from Aspergillus terreus .  Gann. 1976;  67 623-4.
  • 73 Kaji A, Iwata T, Kiriyama N, Nomura M, Miyamoto K I. Studies on the cytotoxicity of asterriquinone derivatives.  J Antibiot. 1998;  51 235-8.
  • 74 Fredenhagen A, Petersen F, Tintelot-Blomley M, Rösel J, Mett H, Hug P. Semicochliodinol A and B: inhibitors of HIV-1 protease and EGF-R protein tyrosine kinase related to asterriquinones produced by the fungus Chrysosporium merdarium .  J Antibiot. 1997;  50 395-401.
  • 75 Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I. et al . Discovery of a small molecule insulin mimetic with antidiabetic activity in mice.  Science. 1999;  284 974-7.
  • 76 Velliquette R A, Friedman J E, Shao J, Zhang B, Ernsberger P. Therapeutic actions of an insulin receptor activator and a novel peroxisome proliferatoraActivated receptor γ-agonist in the spontaneously hypertensive obese rat model of metabolic syndrome X.  J Pharmacol Exp Ther. 2005;  314 422-30.
  • 77 Keller N P, Hohn T M. Metabolic pathway gene clusters in filamentous fungi.  Fungal Genet Biol. 1997;  21 17-29.
  • 78 Hoffmeister D, Keller N P. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 2007, in press.
  • 79 Bok J W, Keller N P. LaeA, a regulator of secondary metabolism in Aspergillus spp.  Euk Cell. 2004;  3 527-35.
  • 80 Rosewich U L, Kistler H C. Role of horizontal gene transfer in the evolution of fungi.  Annu Rev Phytopathol. 2000;  38 325-63.
  • 81 Walton J D. Horizontal gene transfer and the evolution of secondary metabolite gene clusters in fungi: an hypothesis.  Fungal Genet Biol. 2000;  30 167-71.
  • 82 Hill A M. The biosynthesis, molecular genetics and enzymology of the polyketide-derived metabolites.  Nat Prod Rep. 2006;  23 256-320.
  • 83 Walsh C T. Polyketide and nonribosomal peptide antibiotics: modularity and versatility.  Science. 2004;  303 1805-10.
  • 84 Schwarzer D, Finking R, Marahiel M A. Nonribosomal peptides: from genes to products.  Nat Prod Rep. 2003;  20 275-87.
  • 85 Schümann J, Hertweck C. Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes.  J Biotechnol. 2006;  124 690-703.
  • 86 Martin J F. New aspects of genes and enzymes for beta-lactam antibiotic biosynthesis.  Appl Microbiol Biotechnol. 1998;  50 1-15.
  • 87 Elander R P. Industrial production of beta-lactam antibiotics.  Appl Microbiol Biotechnol. 2003;  61 385-92.
  • 88 Aharonowitz Y, Cohen G, Martin J F. Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution.  Annu Rev Microbiol. 1992;  46 461-95.
  • 89 Lamas-Maceiras M, Vaca I, Rodriguez E, Casqueiro J, Martin J F. Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase.  Biochem J. 2006;  395 147-55.
  • 90 Fierro F, Garcia-Estrada C, Castillo N I, Rodriguez R, Velasco-Conde T, Martin J F. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum .  Fungal Genet Biol. 2006;  43 618-29.
  • 91 Burzlaff N I, Rutledge P J, Clifton I J, Hensgens C M, Pickford M, Adlington R M. et al . The reaction cycle of isopenicillin-N-synthase observed by X-ray diffraction.  Nature. 1999;  401 721-4.
  • 92 Valegard K, van Scheltinga A C, Lloyd M D, Hara T, Ramaswamy S, Perrakis A. et al . Structure of a cephalosporin synthase.  Nature. 1998;  394 805-9.
  • 93 Gröger D, Mothes K V, Simon H, Floss H G, Weygand F. On the incorporation of mevalonic acid in the ergoline system of clavine alkaloids.  Z Naturforsch. 1960;  15B 141-3.
  • 94 Gröger D, Floss H G. Biochemistry of ergot alkaloids - achievements and challenges. In: Cordell GA, editor. The Alkaloids. San Diego; Academic Press 1998: 171-218.
  • 95 Haarmann T, Machado C, Lubbe Y, Correia T, Schardl C L, Panaccione D G. et al . The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution.  Phytochemistry. 2005;  66 1312-20.
  • 96 Panaccione D G. Origins and significance of ergot alkaloid diversity in fungi.  FEMS Microbiol Lett. 2005;  251 9-17.
  • 97 Lawen A, Zocher R. Cyclosporin synthetase. The most complex peptide synthesizing multienzyme polypeptide so far described.  J Biol Chem. 1990;  265 1355-60.
  • 98 Dittmann J, Lawen A, Zocher R, Kleinkauf H. Isolation and partial characterization of cyclosporin synthetase from a cyclosporin non-producing mutant of Beauveria nivea .  Biol Chem Hoppe-Seyler. 1990;  371 829-34.
  • 99 Weber G, Schörgendorfer K, Schneider-Scherzer E, Leitner E. The peptide synthetase catalyzing cyclosporine production in Tolypocladium niveum is encoded by a giant 45.8-kilobase open reading frame.  Curr Genet. 1994;  26 120-5.
  • 100 Kennedy J, Auclair K, Kendrew S G, Park C, Vederas J C, Hutchinson C R. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis.  Science. 1999;  284 368-72.
  • 101 Abe Y, Suzuki T, Ono C, Iwamoto K, Hosobuchi M, Yoshikawa H. Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum .  Mol Gen Genet. 2002;  267 636-46.
  • 102 Galagan J E, Calvo S E, Cuomo C, Ma L J, Wortman J R, Batzoglou S. et al . Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae .  Nature. 2005;  438 1105-15.
  • 103 Nierman W C, Pain A, Anderson M J, Wortman J R, Kim H S, Arroyo J. et al . Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus .  Nature. 2005;  438 1151-6.
  • 104 Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G. et al . Genome sequencing and analysis of Aspergillus oryzae .  Nature. 2005;  438 1157-61.
  • 105 Bok J W, Hoffmeister D, Maggio-Hall L A, Murillo R, Glasner J D, Keller N P. Genomic mining for Aspergillus natural products.  Chem Biol. 2006;  13 31-7.
  • 106 Scherlach K, Hertweck C. Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining.  Org Biomol Chem. 2006;  45 7835-8.
  • 107 Lee B N, Kroken S, Chou D Y, Robbertse B, Yoder O C, Turgeon B G. Functional analysis of all nonribosomal peptide synthetases in Cochliobolus heterostrophus reveals a factor, NPS6, involved in virulence and resistance to oxidative stress.  Euk Cell. 2005;  4 545-55.
  • 108 Jones T, Federspiel N A, Chibana H, Dungan J, Kalman S, Magee B B. et al . The diploid genome sequence of Candida albicans .  Proc Natl Acad Sci USA. 2004;  101 7329-34.
  • 109 Braun B R, van Het Hoog M, d’Enfert C, Martchenko M, Dungan J, Kuo A. et al . A human-curated annotation of the Candida albicans genome.  PLoS Genet. 2005;  1 E1.
  • 110 De Backer M D, Nelissen B, Logghe M, Viaene J, Loonen I, Vandoninck S. et al . An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicans .  Nat Biotechnol. 2001;  19 212-3.
  • 111 De Backer M D, Van Dijck P. Progress in functional genomics approaches to antifungal drug target discovery.  Trends Microbiol. 2003;  11 470-8.

Dr. Dirk Hoffmeister

Pharmaceutical Biology and Biotechnology

Albert-Ludwigs-University Freiburg

Stefan-Meier-Strasse 19

79104 Freiburg

Germany

Fax: +49-761-203-8383

Email: dirk.hoffmeister@pharmazie.uni-freiburg.de

    >