Semin Thromb Hemost 2004; 30(1): 5-20
DOI: 10.1055/s-2004-822967
Copyright © 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Contribution of the Hemostatic System to Angiogenesis in Cancer

Marek Z. Wojtukiewicz1 , 2 , Ewa Sierko2 , Janusz Rak3
  • 1Professor of Medicine and Oncology
  • 2Department of Oncology, Medical University, Bialystok, Poland
  • 3Henderson Research Centre, Experimental Thrombosis Research, McMaster University, Hamilton, Ontario, Canada
Further Information

Publication History

Publication Date:
22 March 2004 (online)

It is now recognized that the hemostatic system plays an important role in cancer growth and dissemination, processes known to be vitally dependent on new tumor blood vessel formation (angiogenesis). There is also an increasing body of evidence supporting the link between the various components of the coagulation/fibrinolysis systems and angiogenic activity in cancer patients. Tissue factor (TF), thrombin, fibrinogen, fibrin, and plasminogen activation system, as well as platelets, all are able to promote angiogenesis. On the other hand, coagulation inhibitors, as well as cryptic (proteolytically released) domains of hemostatic proteins, are also known to act as angiogenesis inhibitors. Indeed, modulation (stimulation or inhibition) of angiogenesis may result from either classical functions of various molecular components of the hemostatic cascade, their less studied “alternative” activities, or both. Although much remains to be understood about this complex circuitry these considerations support the judicious use of anticoagulants in patients with malignancy as well as encourage the search for novel antiangiogenic activities that may reside within molecular and cellular components of the hemostatic system.

REFERENCES

  • 1 Hillen H FP. Thrombosis in cancer patients.  Ann Oncol. 2000;  11(suppl 3) 273-276
  • 2 Folkman J. Tumor angiogenesis: therapeutic implications.  N Engl J Med. 1971;  285 1182-1186
  • 3 Folkman J. What is the evidence that tumors are angiogenesis dependent?.  J Natl Cancer Inst. 1990;  82 4-6
  • 4 Trousseau A. Phlegmasia alba dolens.  Clin Med Hôtel-Dieu Paris. 1865;  3 654-712
  • 5 Rickles F R, Levine M, Edwards R L. Hemostatic alterations in cancer patients.  Cancer Metastasis Rev. 1992;  11 237-248
  • 6 Bick R L. Coagulation abnormalities in malignancy: a review.  Semin Thromb Hemost. 1992;  18 353-372
  • 7 Luzzato G, Schafer A I. The prethrombotic state in cancer.  Semin Oncol. 1990;  17 147-159
  • 8 Nand S. Hemostasis and cancer.  Cancer J. 1993;  6 54-58
  • 9 Donati M B. Cancer and thrombosis.  Haemostasis. 1994;  24 128-131
  • 10 Wojtukiewicz M Z, Zacharski L R, Memoli V A et al.. Abnormal regulation of coagulation/fibrynolysis in small cell carcinoma of the lung.  Cancer. 1990;  65 481-485
  • 11 Wojtukiewicz M Z, Zacharski L R, Memoli V A et al.. Fibrinogen-fibrin transformation in situ in renal cell carcinoma.  Anticancer Res. 1990;  10 579-582
  • 12 Wojtukiewicz M Z, Zacharski L R, Memoli V A et al.. Malignant melanoma. Interaction with coagulation and fibrinolysis pathways in situ.  Am J Clin Pathol. 1990;  93 516-521
  • 13 Zacharski L R, Memoli V A, Ornstein D L, Rousseau S M, Kisiel W, Kudryk B J. Tumor cell procoagulant and urokinase expression in carcinoma of the ovary.  J Natl Cancer Inst. 1993;  85 1225-1230
  • 14 Wojtukiewicz M Z, Rucinska M, Zimnoch L et al.. Expression of prothrombin fragment 1 + 2 in cancer tissue as an indicator of local activation of blood coagulation.  Thromb Res. 2000;  97 335-342
  • 15 Wojtukiewicz M Z, Sierko E, Zacharski L R, Zimnoch L, Kudryk B, Kisiel W. Tissue factor dependent coagulation activation and impaired fibrinolysis in loco in gastric cancer.  Semin Thromb Hemost. 2003;  29 291-299
  • 16 Dvorak H F. Tumors: wounds that do not heal.  N Engl J Med. 1986;  315 1650-1659
  • 17 Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease.  Nat Med. 1995;  1 27-31
  • 18 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis.  Cell. 1996;  86 353-364
  • 19 Carmeliet P, Jain R K. Angiogenesis in cancer and other diseases.  Nature. 2000;  407 249-257
  • 20 Holash J, Maisonpierre P C, Compton D et al.. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF.  Science. 1999;  284 1994-1998
  • 21 Rak J, Filmus J, Kerbel R S. Reciprocal paracrine interactions between tumor cells and endothelial cells. The “angiogenesis progression” hypothesis.  Eur J Cancer. 1996;  32A 2438-2450
  • 22 Nicosia R F, Tchao R, Lieghton J. Angiogenesis-dependent tumor spread in reinforced fibrin clot culture.  Cancer Res. 1983;  43 2159-2166
  • 23 Brooks P C, Stromblad S, Klemke R, Visscher D, Sarkar F H, Cheresh D A. Anti-integrin αbβ3 blocks human breast cancer growth and angiogenesis in human skin.  J Clin Invest. 1995;  96 1815-1822
  • 24 Rak J W, Hegmann E J, Lu C, Kerbel R S. Progressive loss of sensitivity to endothelium-derived growth inhibitors expressed by human melanoma cells during disease progression.  J Cell Physiol. 1994;  159 245-255
  • 25 Li L, Nicolson G L, Fidler I J. Direct in vitro lysis of metastatic tumor cells by cytokine-activated murine vascular endothelial cells.  Cancer Res. 1991;  51 245-254
  • 26 Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig N E. Halting angiogenesis suppresses carcinoma cell invasion.  Nat Med. 1997;  3 1222-1227
  • 27 Hamada J, Cavanaugh P G, Miki K, Nicolson G L. A paracrine migration-stimulating factor for metastatic tumor cells secreted by mouse hepatic sinusoidal endothelial cells: identification as complement component C3b.  Cancer Res. 1993;  53 4418-4423
  • 28 Plate K H, Breier G, Risau G. Molecular mechanism of developmental and tumour angiogenesis.  Brain Pathol. 1994;  4 207-221
  • 29 Bouck N, Stellmach V, Hsu S C. How tumors become angiogenic.  Adv Cancer Res. 1996;  69 135-174
  • 30 Hlatky L, Tsinoru C, Hahnfeldt P, Coleman C N. Mammary fibroblasts may influence breast tumor angiogenesis via hypoxia-induced vascular endothelial growth factor up-regulation and protein expression.  Cancer Res. 1994;  54 6083-6086
  • 31 Fukumura D, Xavier R, Sugiura T et al.. Tumor induction of VEGF promoter activity in stromal cells.  Cell. 1998;  94 715-725
  • 32 Norrby K. Mast cells and angiogenesis.  APMIS. 2002;  110 355-371
  • 33 Coussens L M, Wilfred W R, Berges G et al.. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis.  Genes Dev. 1999;  13 1382-1397
  • 34 Feoktistov I, Ryzhov S, Goldstein A E, Biaggioni I. Mast cell-mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors.  Circ Res. 2003;  92 485-492
  • 35 Ohta M, Kitadai Y, Tanaka S et al.. Monocyte chemoatractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas.  Int J Oncol. 2003;  22 773-778
  • 36 Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?.  Lancet. 2001;  357 539-545
  • 37 Senger D R. Molecular framework for angiogenesis: a complex web of interactions between extravasated plasma proteins and endothelial cell proteins induced by angiogenic cytokines.  Am J Pathol. 1996;  149 1-7
  • 38 Pinedo H M, Verheul H MW, D'Amato R J, Folkman J. Involvement of platelets in tumor angiogenesis?.  Lancet. 1998;  352 1775-1777
  • 39 Wartiovaara U, Salven P, Mikkola Heta I. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation.  Thromb Haemost. 1998;  80 171-175
  • 40 Ferrara N. Vascular endothelial growth factor: molecular and biological aspects.  Curr Top Microbiol Immunol. 1999;  237 1-30
  • 41 Bikfalvi A, Klein S, Pintucci G, Rifkin D B. Biological roles of fibroblast growth factor-2.  Endocr Rev. 1997;  18 26-45
  • 42 Folkman J, Shing Y. Angiogenesis.  J Biol Chem. 1992;  267 10931-10934
  • 43 Bussolino F, Di Renzo M F, Ziche M et al.. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth.  J Cell Biol. 1992;  119 629-641
  • 44 Rich J N. The role of transforming growth factor-beta in primary brain tumors.  Front Biosci. 2003;  8 e245-260
  • 45 Holmgren L, O'Reilly M S, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression.  Nat Med. 1995;  1 149-153
  • 46 O'Reilly M S, Boehm T, Shing Y et al.. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth.  Cell. 1997;  88 277-285
  • 47 O'Reilly M S, Pirie-Shepherd S, Lane W S, Folkman J. Antiangiogenic activity of the cleaved conformation of the serpin antithrombin.  Science. 1999;  285 1926-1928
  • 48 Dameron K M, Volpert O V, Tainsky M A, Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1.  Science. 1994;  265 1582-1584
  • 49 Iruela-Arispe M L, Vazquez F, Ortega M A. Antiangiogenic domains shared by thrombospondins and matallospondins, a new family of of angiogenic inhibitors.  Ann N Y Acad Sci. 1999;  886 58-66
  • 50 Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel R S. Oncogenes as inducers of tumor angiogenesis.  Cancer Metast Rev. 1995;  14 263-277
  • 51 Rak J, Mitsuhashi Y, Sheehan C et al.. Oncogenes and tumor angiogenesis: differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts.  Cancer Res. 2000;  60 490-498
  • 52 Hanahan D, Weinberg R A. The hallmarks of cancer.  Cell. 2000;  100 57-70
  • 53 Kieser A, Weich H A, Brandner G, Marme D, Kolch W. Mutant p53 potentiates protein kinase C induction of vascular endothelial growth factor expression.  Oncogene. 1994;  9 963-969
  • 54 Siemeister G, Weindel K, Mohrs K, Barleon B, Martiny-Baron G, Marme D. Reversion of deregulated expression of vascular growth factor in human renal carcinoma cells by von Hippel-Lindau tumor suppressor protein.  Cancer Res. 1996;  56 2299-2301
  • 55 Harada H, Nakagawa K, Iwata S et al.. Restoration of wild-type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas.  Cancer Res. 1999;  59 3783-3789
  • 56 Rak J, Yu J L, Klement G, Kerbel R S. Oncogenes and angiogenesis: signaling three-dimensional tumor growth.  J Investig Dermatol Symp Proc. 2000;  5 24-33
  • 57 Mazure N M, Chen E Y, Yeh P, Laderoute K R, Giaccia A J. Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression.  Cancer Res. 1996;  56 3436-3440
  • 58 Mazure N M, Chen E Y, Yeh P, Laderoute K R, Giaccia A J. Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element.  Blood. 1997;  90 3322-3331
  • 59 Laderoute K R, Alarcon R M, Brody M D et al.. Opposing effects of hypoxia on expression of the angiogenic inhibitor thrombospondin-1 and the angiogenic inducer vascular endothelial growth factor.  Clin Cancer Res. 2000;  6 2941-2950
  • 60 Koura A N, Liu W, Kitadai Y, Singh R K, Radinsky R, Ellis L M. Regulation of vascular endothelial growth factor expression in human colon carcinoma cells by cell density.  Cancer Res. 1996;  56 3891-3894
  • 61 Viloria-Petit A M, Rak J, Hung M-C, Rockwell P, Goldstein N, Kerbel R S. Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors.  Am J Pathol. 1997;  151 1523-1530
  • 62 Dvorak H F, Dvorak A M, Manseau E J, Wiberg L, Churchil W H. Fibrin gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs. Role of cellular immunity, myofibroblasts, microvascular damage, and infarction in line 1 tumor regression.  J Natl Cancer Inst. 1979;  62 1459-1472
  • 63 Ferrara N, Gerber H P, LeCounter J. The biology of VEGF and its receptors.  Nat Med. 2003;  9 669-676
  • 64 Behzadian M A, Windsor L J, Ghaly N et al.. VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor.  FASEB J. 2003;  17 752-754
  • 65 Francis J L, Biggerstaff J, Amirkhosravi A. Hemostasis and malignancy.  Semin Thromb Hemost. 1998;  24 93-109
  • 66 Callendar N S, Varki N, Rao L V. Immunohistochemical identification of tissue factor in solid tumors.  Cancer. 1992;  70 1194-1201
  • 67 Gordon S G. Cancer cell procoagulants and their role in malignant disease.  Semin Thromb Hemost. 1992;  18 424-433
  • 68 Cavanaugh P G, Sloane B F, Bajkowski A S, Taylor J D, Honn K V. Purification and characterization of platelet aggregating activity from tumor cells: copurification with procoagulant activity.  Thromb Res. 1985;  37 309-326
  • 69 Chelladurai M, Honn K V, Walz D A. HLA-DR is a procoagulant.  Biochem Biophys Res Commun. 1991;  178 467-473
  • 70 Rao L VM. Tissue factor as a tumor procoagulant.  Cancer Metastasis Rev. 1992;  11 249-266
  • 71 Wojtukiewicz M Z, Zimnoch L, Kloczko J et al.. Heterogeneous expression of endothelial cell-associated proteins in gliomas of different malignancy. In: Messmer K, Kubler WM Proceedings of 6th World Congress for Microcirculation. Bologna, Italy; Monduzzi Editore 1996: 1007-1010
  • 72 Takano S, Tsuboi K, Tomono Y, Mitsui Y, Nose T. Tissue factor, osteopontin, αvβ3 integrin expression in microvasculature of gliomas associated with vascular endothelial growth factor expression.  Br J Cancer. 2000;  82 1967-1973
  • 73 Wojtukiewicz M Z, Zacharski L R, Rucinska M et al.. Expression of tissue factor and tissue factor pathway inhibitor in situ in laryngeal carcinoma.  Thromb Haemost. 1999;  82 1659-1662
  • 74 Abdulkadir S A, Carvalhal G F, Kaleem Z et al.. Tissue factor expression and angiogenesis in human prostate carcinoma.  Hum Pathol. 2000;  31 443-447
  • 75 Wojtukiewicz M Z, Rucinska M, Zacharski R R et al.. Localization of blood coagulation factors in situ in pancreatic carcinoma.  Thromb Haemost. 2001;  86 1416-1420
  • 76 Zacharski L R, Wojtukiewicz M Z, Constantini V, Ornstein D L, Memoli V A. Pathways of coagulation/fibrinolysis activation in malignancy.  Semin Thromb Hemost. 1992;  18 104-116
  • 77 Zhang Y, Deng Y, Luther T et al.. Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice.  J Clin Invest. 1994;  94 1320-1327
  • 78 Contrino J, Hair G, Kreutzer D L, Rickles F R. In situ detection of tissue factor in vascular endothelial cells: correlation with the malignant phenotype of human breast disease.  Nat Med. 1996;  2 209-215
  • 79 Folkman J. Tumor angiogenesis and tissue factor.  Nat Med. 1996;  2 167-168
  • 80 Shoji M, Abe K, Nawroth P P, Rickles R. Molecular mechanisms linking thrombosis and angiogenesis in cancer.  Trends Cardiovasc Med. 1997;  7 52-59
  • 81 Shoji M, Hancock W W, Abe K et al.. Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and vascular endothelial growth factor in human cancer.  Am J Pathol. 1998;  152 399-411
  • 82 Abe K, Shoji M, Chen J et al.. Regulation of vascular endothelial growth production and angiogenesis by the cytoplasmic tail of tissue factor.  Proc Natl Acad Sci USA. 1999;  96 8663-8668
  • 83 Ollivier V, Bentolila S, Chabbat J, Hakim J, Prost D. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.  Blood. 1998;  91 2698-2703
  • 84 Rottingen J A, Enden T, Camerer E, Iversen J G, Prydz H. Binding of human factor VIIa to tissue factor induces Ca2+ signals in J82 cells, transfected COS-1 cells, MDCK cells and in human endothelial cells induced to synthesize tissue factor.  J Biol Chem. 1995;  270 4650-4660
  • 85 Camerer E, Rottingen J A, Iversen J G, Prydz H. Coagulation factors VII and X induce Ca2+ oscillations in Madin-Darby canine kidney cells only when proteolytically active.  J Biol Chem. 1996;  271 29034-29042
  • 86 Camerer E, Huang W, Coughlin S R. Tissue factor- and X-dependent activation of protease-activated receptor 2 by factor VIIa.  Proc Natl Acad Sci USA. 2000;  97 5255-5260
  • 87 Prydz H, Camerer E, Rottingen J A, Wiiger M T, Gjernes E. Cellular consequences of the initiation of blood coagulation.  Thromb Haemost. 1999;  82 183-192
  • 88 Milanini J, Vinals F, Pouyssegur J, Pages G. p42/p44 MAP kinase model plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts.  J Biol Chem. 1998;  273 18165-18172
  • 89 Poulsen L K, Jacobsen N, Sorensen B B et al.. Signal transduction via the mitogen-activated protein kinase pathway induced by binding of coagulation factor VIIa to tissue factor.  J Biol Chem. 1998;  273 6228-6232
  • 90 Sorensen B B, Freskgard P O, Nielsen L S, Rao L V, Ezban M, Peterson L C. Factor VIIa-induced p44/42 mitogen-activated protein activation requires the proteolytic activity of factor VIIa and is independent of the tissue factor cytoplasmic domain.  J Biol Chem. 1999;  274 21349-21354
  • 91 Versteeg H H, Hoedemaeker I, Diks S H et al.. Factor VIIa/tissue factor-induced signaling via the activation of Src-like kinases, phosphatidyl inositol 3-kinase, and Rac.  J Biol Chem. 2000;  275 28750-28756
  • 92 Ollivier V, Chabbat J, Herbert J M, Hakim J, de Prost D. Vascular endothelial growth factor production by fibroblasts in response to factor VIIa binding to tissue factor involves thrombin and factor Xa.  Arterioscler Thromb Vasc Biol. 2000;  20 1374-1381
  • 93 Zioncheck T F, Roy S, Vehar G A. The cytoplasmic domain of tissue factor is phosphorylated by a protein kinase C-dependent mechanism.  J Biol Chem. 1992;  267 3561-3564
  • 94 Yan S F, Zou Y S, Gao Y et al.. Tissue factor transcription driven by Egr-1 is critical mechanism of murine pulmonary fibrin deposition in hypoxia.  Proc Natl Acad Sci USA. 1998;  95 8298-8303
  • 95 Yan S F, Lu J, Zou Y S et al.. Protein kinase C-beta and oxygen deprivation. A novel Egr-1-dependent pathway for fibrin deposition in hypoxemic vasculature.  J Biol Chem. 2000;  275 11921-11928
  • 96 Shweiki D, Itin A, Soffer D, Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis.  Nature. 1992;  359 843-845
  • 97 Minchenko A, Bauer T, Salceda S, Caro J. Hypoxic stimulation of vascular endothelial growth factor in vitro and in vivo.  Lab Invest. 1994;  71 374-379
  • 98 Goldberg M A, Schneider T J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin.  J Biol Chem. 1994;  269 4355-4359
  • 99 Amirkhosravi A, Meyer T, Warnes G et al.. Pentoxyfilline inhibits hypoxia-induced up-regulation of tumor cell tissue factor and vascular endothelial growth factor.  Thromb Haemost. 1998;  80 598-602
  • 100 O'Rourke J, Pugh C, Bartlett S, Ratcliffe P. Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR. Role of hypoxia-inducible factor-1.  Eur J Biochem. 1996;  241 403-410
  • 101 Mechtcheriakova D, Wlachos A, Holzmüller H, Binder B R, Hofer E. Vascular endothelial growth factor-induced tissue factor expression in endothelial cells is mediated by EGR-1.  Blood. 1999;  93 3811-3823
  • 102 Wojtukiewicz M Z, Sierko E, Klement P, Rak J. The hemostatic system and angiogenesis in malignancy.  Neoplasia. 2001;  3 371-384
  • 103 Rak J, Klement G. Impact of oncogenes and tumor suppressor genes on deregulation of hemostasis and angiogenesis in cancer.  Cancer Metastasis Rev. 2000;  19 93-96
  • 104 Bromberg M E, Cappello M. Cancer and blood coagulation: molecular aspects.  Cancer J Sci Am. 1999;  5 132-138
  • 105 Bajaj M S, Bajaj S P. Tissue factor pathway inhibitor: potential therapeutic applications.  Thromb Haemost. 1997;  78 471-477
  • 106 Sevinsky J R, Rao L VM, Ruf W. Ligand-induced protease receptor translocation into caveolae: a mechanism for regulating cell surface proteolysis of the tissue factor-dependent coagulation pathway.  J Cell Biol. 1996;  133 293-304
  • 107 Werling R W, Zacharski L R, Kisiel W, Bajaj S P, Memoli V A, Rousseau S A. Distribution of tissue factor pathway inhibitor in normal and malignant human tissues.  Thromb Haemost. 1993;  69 366-369
  • 108 Mousa S A, Mohamed S. Anti-angiogenesis efficacy of the low molecular weight heparin (LMWH) tinzaparin and tissue factor pathway inhibitor (TFPI) [abstract].  Blood. 1999;  94(suppl) A22,82
  • 109 Amirkhosravi A, Francis J, Mousa S A. Anti-metastatic effect of the low molecular weight heparin (LMWH) tinzaparin and tissue factor pathway inhibitor (TFPI) [abstract].  Thromb Haemost. 2001;  15(suppl) A118,149
  • 110 Ruf W, Mueller B M. Tissue factor in cancer angiogenesis and metastasis.  Curr Opin Hematol. 1996;  3 379-384
  • 111 Ruf W, Mueller B M. Tissue factor signalling.  Thromb Haemost. 1999;  82 175-182
  • 112 Sprecher C A, Kisiel W, Mathews S M, Foster D C. Molecular cloning, expression, and partial characterization of a second tissue-factor-pathway-inhibitor.  Proc Natl Acad Sci USA. 1994;  91 3353-3357
  • 113 Peterson L C, Sprecher C A, Foster D C, Blumberg H, HamamotoT, Kisiel W. Inhibitory properties of a novel human Kunitz-type protease inhibitor homologous to tissue factor pathway inhibitor.  Biochemistry. 1996;  35 266-272
  • 114 Iino M, Foster D C, Kisiel W. Quantification and characterization of human endothelial cell-derived tissue factor pathway inhibitor-2.  Arterioscler Thromb Vasc Biol. 1998;  18 40-46
  • 115 Rao C N, Cook B, Liu Y et al.. HT-1080 fibrosarcoma cell matrix degradation and invasion are inhibited by the matrix-associated serine protease inhibitor TFPI-2/33 kDa MSPI.  Int J Cancer. 1998;  76 749-756
  • 116 Rao C N, Mohanam S, Puppala A, Rao J S. Regulation of pro-MMP-1 and pro-MMP-3 activation by tissue factor pathway inhibitor-2/matrix associated serine protease inhibitor.  Biochem Biophys Res Commun. 1999;  255 94-98
  • 117 Wojtukiewicz M Z, Sierko E, Zimnoch L, Kozlowski L, Kisiel W. Immunochistochemical localization of tissue factor pathway inhibitor-2 in human tumor tissue.  Thromb Haemost. 2003;  90 140-146
  • 118 Wojtukiewicz M Z, Tang D G, Nelson K K, Walz D A, Diglio C A, Honn K V. Thrombin enhances tumor cell adhesive and metastatic properties via increased αIIbβ3 expression on the cell surface.  Thromb Res. 1992;  68 233-245
  • 119 Wojtukiewicz M Z, Tang D G, Ben-Josef E, Renaud C, Walz D A, Honn K V. Solid tumor cells express functional “tethered-ligand” thrombin receptor.  Cancer Res. 1995;  55 698-704
  • 120 Zhou H, Gabazza E C, Takeya H et al.. Prothrombin and its derivatives stimulate motility of melanoma cells.  Thromb Haemost. 1998;  80 407-412
  • 121 Wojtukiewicz M Z, Tang D G, Ciarelli J J et al.. Thrombin increases the metastatic potential of tumor cells.  Int J Cancer. 1993;  54 793-806
  • 122 Fischer E G, Ruf W, Mueller B M. Tissue factor-initiated thrombin generation activates the signaling thrombin receptor on malignant melanoma cells.  Cancer Res. 1995;  55 1629-1632
  • 123 Tsopanoglou N E, Pipili-Synetos E, Maragoudakis M E. Thrombin promotes angiogenesis by a mechanism independent of fibrin formation.  Am J Physiol. 1993;  264 C1302-1307
  • 124 Zacharski L R, Costantini V, Wojtukiewicz M Z, Memoli V A, Kudryk B J. Anticoagulants as cancer therapy.  Semin Oncol. 1990;  17 217-227
  • 125 Gaffney P J, Edgell T A, Whitton C M. The hemostatic balance-Astrup revised.  Haemostasis. 1999;  29 58-71
  • 126 Ukropec J A, Hollinger M K, Salva S M, Woolkalis M J. SHP2 assoctiation with VE-cadherin complexes in human endothelial cells is regulated by thrombin.  J Biol Chem. 2000;  275 5983-5986
  • 127 Maragoudakis M E, Tsopanoglou N E, Andriopoulou P, Maragoudakis M M. Effects of thrombin/thrombosis in angiogenesis and tumor progression.  Matrix Biol. 2000;  19 345-351
  • 128 Belloni P A, Carney D H, Nicolson G L. Organ-derived microvessel endothelial cells exhibit differential responsiveness to thrombin and other growth factors.  Microvasc Res. 1992;  43 20-45
  • 129 Naldini A, Carney D H, Pucci A, Pasquall A, Carraro F. Thrombin regulates the expression of proangiogenic cytokines via proteolytic activation of protease-activated receptor-1.  Gen Pharmacol. 2000;  35 255-259
  • 130 Herbert J M, Dupuy E, Laplace M C, Zini J M, Shavit R B, Tobelem G. Thrombin induces endothelial cell growth via both a proteolytic and a non-proteolytic pathway.  Biochem J. 1994;  303 227-231
  • 131 Tsopanoglou N E, Maragoudakis M E. On the mechanism of thrombin-induced angiogenesis.  J Biol Chem. 1999;  274 23969-23976
  • 132 Yamahata H, Takeshima H, Kuratsu J et al.. The role of thrombin in the neo-vascularisation of malignant gliomas: an intrinsic modulator for the up-regulation of vascular endothelial growth factor.  Int J Oncol. 2002;  20 921-928
  • 133 Möhle R, Green D, Moore M AS, Nachman R L, Rafh S. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets.  Proc Natl Acad Sci USA. 1997;  94 663-668
  • 134 Benezra M, Vlodavsky I, Ishai-Michaeli R, Neufeld G, Bar-Shavit R. Thrombin-induced release of active basic fibroblast growth factor-heparan sulfate complexes from subendothelial extracellular matrix.  Blood. 1993;  81 3324-3331
  • 135 Huang Y Q, Li J J, Hu L, Lee M, Karpatkin S. Thrombin induces increased expression and secretion of angiopoietin-2 from human umbilical vein endothelial cells.  Blood. 2002;  99 1646-1650
  • 136 Hanahan D. Signalling vascular morphogenesis and maintenance.  Science. 1997;  277 48-50
  • 137 Levin E G, Stern D M, Nawroth P P et al.. Specificity of the thrombin-induced release of tissue plasminogen activator from cultured human endothelial cells.  Thromb Haemost. 1986;  56 115-119
  • 138 Zucker S, Conner C, DiMassmo B I et al.. Thrombin induces the activation of progelatinase A in vascular endothelial cells.  J Biol Chem. 1995;  270 23730-23738
  • 139 Good D J, Polverini P J, Rastinejad F et al.. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin.  Proc Natl Acad Sci USA. 1990;  87 6624-6628
  • 140 Lee T H, Rhim T H, Kim S S. Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells.  J Biol Chem. 1998;  273 28805-28812
  • 141 Rhim T H, Park C S, Kim E, Kim S S. Human prothrombin fragment 1 + 2 inhibit bFGF-induced BCE cell growth.  Biochem Biophys Res Commun. 1998;  252 513-516
  • 142 Prox D, Becker C, Pirie-Shepherd S, Celik I, Folkman J, Kisker O. Treatment of human pancreatic cancer in mice with angiogenic inhibitors.  World J Surg. 2003;  27 405-411
  • 143 Kisker O, Onizuka S, Banyard J et al.. Generation of multiple angiogenesis inhibitors by human pancreatic cancer.  Cancer Res. 2001;  61 7298-7304
  • 144 Larsson H, Sjoblom T, Dixelius J et al.. Antiangiogenic effects of latent antithrombin through perturbated cell-matrix interactions and apoptosis of endothelial cells.  Cancer Res. 2000;  60 6723-6729
  • 145 Larsson H, Akerud P, Nordling K, Rauh-Segall E, Claesson-Welsh L, Bjork I. A novel anti-angiogenic form of antithrombin with retained proteinase binding ability and heparin affinity.  J Biol Chem. 2001;  276 11996-12002
  • 146 Pahl M V, Vaziri N D, Oveisi F, Wang J, Ding Y. Antithrombin III inhibits mesangial cell proliferation.  J Am Soc Nephrol. 1996;  7 2249-2253
  • 147 Souter P J, Thomas S, Hubbard A R, Poole S, Römisch J, Gray E. Antithrombin inhibits lipopolysaccharide-induced tissue factor and interleukin-6 production by mononuclear cells, human umbilical vein endothelial cells, and whole blood.  Crit Care Med. 2001;  29 134-139
  • 148 Bombeli T, Mueller M, Haeberii A. Anticoagulant properties of the vascular endothelium.  Thromb Haemost. 1997;  77 408-423
  • 149 Calnek D S, Grinnell B W. Thrombomodulin-dependent anticoagulant activity is regulated by vascular endothelial growth factor.  Exp Cell Res. 1998;  238 294-298
  • 150 Nguyen M, Arkell J, Jackson C J. Activated protein C activates human endothelial gelatinase A.  J Biol Chem. 2000;  275 9095-9098
  • 151 Yoda Y, Abe T. Fibrinopeptide A (FPA) level and fibrinogen kinetics in patients with malignant disease.  Thromb Haemost. 1981;  46 706-709
  • 152 Dvorak H F, Brown L F, Detmar M, Dvorak A M. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis.  Am J Pathol. 1995;  146 1029-1039
  • 153 Cheresh D A, Berliner S A, Vicente V, Ruggeri Z M. Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells.  Cell. 1989;  58 945-953
  • 154 Thiagarajan P, Rippon A J, Farrel D H. Alternative sites in human fibrinogen for vascular endothelial cells.  Biochemistry. 1996;  35 4169-4175
  • 155 Dallabrida S M, Falls L A, Farrell D H. Factor XIIIa supports microvascular endothelial cell adhesion and inhibits capillary tube formation in fibrin.  Blood. 2000;  95 2586-2592
  • 156 Hynes R O. Integrins: bi-directional, allosteric signaling machines.  Cell. 2002;  110 673-687
  • 157 Sahni A, Odrljin T, Francis C W. Binding of basic fibroblast growth factor to fibrinogen and fibrin.  J Biol Chem. 1998;  273 7554-7559
  • 158 Sahni A, Baker C A, Sporn L A, Francis C W. Fibrinogen and fibrin protect fibroblast growth factor-2 from proteolytic degradation.  Thromb Haemost. 2000;  83 736-741
  • 159 Sahni A, Francis C W. Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation.  Blood. 2000;  96 3772-3778
  • 160 Sahni A, Sporn L A, Francis C W. Potentiation of endothelial cell proliferation by fibrin (ogen)-bound fibroblast growth factor-2.  J Biol Chem. 1999;  274 14936-14941
  • 161 Contrino J, Goralnick S, Qi J, Hair G, Rickles F R, Kreutzer D L. Fibrin induction of tissue factor expression in human vascular endothelial cells.  Circulation. 1997;  96 605-613
  • 162 Qi J, Kreutzer D L. Fibrin activation of endothelial cells: induction of IL-8 expression.  J Immunol. 1995;  155 867-876
  • 163 Thompson W D, Smith E B, Stirk C M, Marshall F I, Stout A J, Kocchar A. Angiogenic activity of fibrin degradation products is located in fibrin fragment E.  J Pathol. 1992;  168 47-53
  • 164 Bootle-Wilbraham C A, Tazzyman S, Thompson W D, Stirk C M, Lewis C E. Fibrin fragment E stimulates the proliferation, migration and differentiation of human microvascular endothelial cells in vitro.  Angiogenesis. 2001;  4 269-275
  • 165 Bootle-Wilbraham C A, Tazzyman S, Marshal J M, Lewis C E. Fibrinogen E-fragment inhibits the migration and tubule formation of human dermal microvascular endothelial cells in vitro.  Cancer Res. 2000;  60 4719-4724
  • 166 Sporn L, Bunce L A, Francis C W. Cell proliferation on fibrin: modulation by fibrinopeptide cleavage.  Blood. 1995;  86 1802-1810
  • 167 Bunce L A, Sporn L A, Francis C W. Endothelial cell spreading on fibrin requires fibrinopeptide B cleavage and amino acid residues 15-42 of the β chain.  J Clin Invest. 1992;  89 842-850
  • 168 Palumbo J S, Kombrinck K W, Drew A F et al.. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells.  Blood. 2000;  96 3302-3309
  • 169 Browder T, Folkman J, Pirie-Shepherd S. The hemostatic system as a regulator of angiogenesis.  J Biol Chem. 2000;  275 1521-1524
  • 170 Foekens J A, Peters H A, Look M P et al.. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients.  Cancer Res. 2000;  60 636-643
  • 171 Okusa Y, Ichikura T, Mochizuki H. Prognostic impact of stromal cell-derived urokinase-type plasminogen activator in gastric carcinoma.  Cancer. 1999;  85 1033-1038
  • 172 Harvey S R, Sait S NJ, Xu Y, Bailey J L, Penetrante R M, Markus G. Demonstration of urokinase expression in cancer cells of colon adenocarcinomas by immunohistochemistry and in situ hybridization.  Am J Pathol. 1999;  155 1115-1120
  • 173 Oka T, Ishida T, Nishino T, Sugimachi K. Immunohistochemical evidence of urokinase-type plasminogen activator in primary and metastatic tumors of pulmonary adenocarcinoma.  Cancer Res. 1991;  51 274-281
  • 174 Evans C P, Elfman F, Parangi S, Conn M, Cuhna G, Shuman M A. Inhibition of prostate cancer neovascularisation and growth by urokinase-plasminogen activator receptor blockade.  Cancer Res. 1997;  57 3594-3599
  • 175 Kuhn W, Schmalfeld B, Reuning U et al.. Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc.  Br J Cancer. 1999;  79 1746-1751
  • 176 deWitte J H, Sweep C GJ, Klijn J GM et al.. Prognostic value of tissue-type plasminogen activator (tPA) and its complex with the type-1 inhibitor (PAI-1) in breast cancer.  Br J Cancer. 1999;  80 286-294
  • 177 Franks A J, Ellis E. Immunohistochemical localization of tissue plasminogen activator in human brain tumors.  Br J Cancer. 1989;  59 462-466
  • 178 Bajou K, Noel A, Gerard R D et al.. Absence of host plasminogen activator inhibitor 1 prevents cancer invasion and vascularisation.  Nat Med. 1998;  4 923-927
  • 179 Mandriota S J, Seghezzi G, Vassalli J D et al.. Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells.  J Biol Chem. 1995;  270 9709-9716
  • 180 Pepper M S, Ferrara N, Orci L, Montesano R. Vascular endothelial growth factor (VEGF) induces plasminogen activators and plasminogen activator inhibitor-1 in microvascular endothelial cells.  Biochem Biophys Res Commun. 1991;  181 902-906
  • 181 Gualandris A, Presta M. Transcriptional and posttranscriptional regulation of urokinase-type plasminogen activator expression in endothelial cells by basic fibroblast growth factor.  J Cell Physiol. 1995;  162 400-409
  • 182 Mignatti P, Mazzieri R, Rifkin D B. Expression of the urokinase receptor in vascular endothelial cells is stimulated by basic fibroblast growth factor.  J Cell Biol. 1991;  113 1193-1201
  • 183 Bikfalvi A, Klein S, Pintucci G, Rifkin D B. Biological roles of fibroblast growth factor-2.  Endocrinol Rev. 1997;  18 26-45
  • 184 Pepper M S, Ferrara N, Orci L, Montesano R. Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro.  Biochem Biophys Res Commun. 1992;  189 824-831
  • 185 Asahara T, Bauters C, Zheng L P et al.. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo.  Circulation. 1995;  92(suppl II) II365-II371
  • 186 Pepper M S, Mandriota S J. Regulation of vascular endothelial growth factor receptor-2 (Flk-1) expression in vascular endothelial cells.  Exp Cell Res. 1998;  241 414-425
  • 187 Lindgren M, Johansson M, Sandstrom J, Jonsson Y, Bergenheim A T, Henricsson R. VEGF and tPA co-expressed in malignant glioma.  Acta Oncol. 1997;  36 615-623
  • 188 Sandström M, Johansson M, Sandström J, Bergenheim A T, Henriksson R. Expression of the proteolytic factors tPA and uPA, PAI-1 and VEGF during malignant glioma progression.  Int J Dev Neurosci. 1999;  17 473-481
  • 189 Nakata S, Ito K, Fujimori M et al.. Involvement of vascular endothelial growth factor and urokinase-type plasminogen activator receptor in microvessel invasion in human colorectal cancer.  Int J Cancer. 1998;  79 179-186
  • 190 Naldini L, Tamagnone L, Vigna E et al.. Extracellular proteolytic cleavage by urokinase is required for activation of hepatocyte growth factor/scatter factor.  EMBO J. 1992;  11 4825-4833
  • 191 Sato Y, Tsuboi R, Lyons R, Moses H, Rifkin D B. Characterization of the activation of latent TGF-beta by co-cultures of pericytes and smooth muscle cells: a self regulating system.  J Cell Biol. 1990;  111 757-763
  • 192 Gille J, Khalik M, Konig V, Kaufmann R. Hepatocyte growth factor/scatter factor (HGF/SF) induces vascular permeability factor (VPF/VEGF) expression by cultured keratinocytes.  J Invest Dermatol. 1998;  111 1160-1165
  • 193 Yamane A, Seetharam L, Yamguchi S et al.. A new communication system between hepatocytes and sinusoidal endothelial cells in liver through vascular endothelial growth factor and Flt tyrosine kinase family (Flt-1 and KDR/Flk-1).  Oncogene. 1994;  9 2683-2690
  • 194 Pepper M S. Transforming growth factor-beta: vasculogenesis, angiogenesis, and vessel wall integrity.  Cytokine Growth Factor Rev. 1997;  8 21-43
  • 195 Antonelli-Orlidge A, Saunders K B, Smith S R, D'Amore P A. An activated form of transforming growth factor beta is produced by cocultures of endothelial cells and pericytes.  Proc Natl Acad Sci USA. 1989;  86 4544-4548
  • 196 Carmeliet P. Mechanisms of angiogenesis and arteriogenesis.  Nat Med. 2000;  6 389-395
  • 197 Petrovaara L, Kaipanen A, Mustonen T et al.. Vascular endothelial growth factor is induced in response to transforming growth factor beta in fibroblastic and epithelial cells.  J Biol Chem. 1994;  269 6271-6274
  • 198 O'Mahony C A, Albo D, Tuszynsky G P, Berger D H. Transforming growth factor-beta-1 inhibits generation of angiostatin by human pancreatic cancer cells.  Surgery. 1998;  124 388-393
  • 199 Fukao H, Ueshima S, Okada K, Matsuo O. The role of pericellular fibrinolytic system in angiogenesis.  Jpn J Physiol. 1997;  47 161-171
  • 200 Hiroaka N, Allen E, Apel I J, Gyetko M R, Weiss S J. Matrix metalloproteinases regulate neovascularisation by acting as pericellular fibrinolysins.  Cell. 1998;  95 365-377
  • 201 Carmeliet P, Moons L, Dewerchin M et al.. Insights in vessel development and vascular disorders using targeted inactivation and transfer of vascular endothelial growth factor, the tissue factor receptor, and plasminogen system.  Ann N Y Acad Sci. 1997;  811 191-206
  • 202 Heymans S, Luttun A, Nuyens D et al.. Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure.  Nat Med. 1999;  5 1135-1142
  • 203 Schleef R R, Loskutoff D J. Fibrinolytic system of vascular endothelial cells. Role of plasminogen activator inhibitors.  Haemostasis. 1988;  18 328-341
  • 204 Kroon M E, Koolwijk P, van Goor H et al.. Role and localization of urokinase receptor in the formation of new microvascular structures in fibrin matrices.  Am J Pathol. 1999;  154 1731-1742
  • 205 Blasi F. Proteolysis, cell adhesion, chemotaxis, and invasiveness are regulated by the u-PA-u-PAR-PAI-1 system.  Thromb Haemost. 1999;  82 298-304
  • 206 Ossowski L, Clunine G, Masucci M T, Blasi F. In vivo paracrine interaction between urokinase and its receptor: effect on tumor cell invasion.  J Cell Biol. 1991;  115 1107-1112
  • 207 Koshelnick Y, Ehart M, Stockinger H, Binder B R. Mechanisms of signaling through urokinase receptor and the cellular response.  Thromb Haemost. 1999;  82 305-311
  • 208 Colman R W, Pixley R A, Najamunnisa S et al.. Binding of high molecular weight kininogen to endothelial cells via a site within domains 2 and 3 of the urokinase receptor.  J Clin Invest. 1997;  100 1481-1487
  • 209 Colman R W, Jameson B A, Lin Y, Johnson D, Mousa S A. Domain 5 of high molecular weight kininogen (kininostatin) down-regulates endothelial cell proliferation and migration and inhibits angiogenesis.  Blood. 2000;  95 543-550
  • 210 Peek M, Moran P, Mendoza N, Wickramasinghe D, Kirchhofer D. Unusual proteolytic activation of pro-hepatocyte growth factor by plasma kallikrein and coagulation factor XIa.  J Biol Chem. 2002;  277 47804-47809
  • 211 Deng G, Curriden S A, Wang S, Rosenberg S, Loskutoff D J. Is plasminogen activator inhibitor-1 the molecular switch that governs urokinase receptor-mediated cell adhesion and release?.  J Cell Biol. 1996;  134 1-9
  • 212 Minor K H, Peterson C B. Plasminogen activator inhibitor type 1 promotes the self-association of vitronectin into complexes exhibiting altered incorporation into the extracellular matrix.  J Biol Chem. 2002;  277 10337-10345
  • 213 McMahon G A, Petitclerc E, Stefansson S et al.. Plasminogen activator inhibitor-1 regulates tumor growth and angiogenesis.  J Biol Chem. 2001;  276 33964-33968
  • 214 O'Reilly M S, Holmgreen L, Chen C, Folkman J. Angiostatin induces and sustains dormancy of human primary tumors in mice.  Nat Med. 1996;  2 689-692
  • 215 Soff G A, Hong J, Fishman D et al.. Angiostatin 4.5: a naturally occurring human angiogenesis inhibitor [abstract].  Blood. 1998;  92(suppl) 174A
  • 216 Cao R, Wu H L, Veitonmaki N et al.. Suppression of angiogenesis and tumor growth by the inhibitor K1-5 generated by plasmin-mediated proteolysis.  Proc Natl Acad Sci USA. 1999;  96 5728-5733
  • 217 Cao Y. Therapeutic potentials of angiostatin in the treatment of cancer.  Haematologica. 1999;  84 643-650
  • 218 Olas B, Mielicki W P, Wachowicz B, Krajewski T. Cancer procoagulant stimulates platelets adhesion.  Thromb Res. 1999;  94 199-203
  • 219 Banks R E, Forbes M A, Kinsey S E et al.. Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology.  Br J Cancer. 1998;  77 956-964
  • 220 Honn K V, Tang G T, Chen Y Q. Platelets and cancer metastasis: more than an epiphenomenon.  Semin Thromb Hemost. 1992;  18 392-415
  • 221 Verheul H M, Jorna A S, Hoekman K et al.. Vascular endothelial growth factor-stimulated endothelial cells promote adhesion and activation of platelets.  Blood. 2000;  96 4216-4221
  • 222 Clauss M, Gerlach M, Gerlach H et al.. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration.  J Exp Med. 1990;  172 1535-1545
  • 223 Verheul H MW, Hoekman K, Luykx-de Bakker S et al.. Platelet: transporter of vascular endothelial growth factor.  Clin Cancer Res. 1997;  3 2187-2190
  • 224 Wartiovaara U, Salven P, Mikkola Heta I. Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation.  Thromb Haemost. 1998;  80 171-175
  • 225 Brunner G, Nguyen H, Gabrilove J et al.. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells.  Blood. 1993;  81 631-638
  • 226 Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary culture.  Proc Natl Acad Sci USA. 1986;  83 6489-6493
  • 227 Karey K P, Marquardt H, Sirbasku D A. Human platelet-derived mitogens. I. Identification of insulin-like growth factors I and II by purification and N-terminal amino acid sequence analysis.  Blood. 1989;  74 1084-1092
  • 228 Karey K P, Sirbasku D A. Human platelets-derived mitogens. II. Subcellular localization of insulin-like growth factor I to the alpha granule and release in response to thrombin.  Blood. 1989;  74 1093-1100
  • 229 Ben-Ezra J, Sheibani K, Hwang D L, Lev-Ran A. Megakaryocyte synthesis is the source of epidermal growth factor in human platelets.  Am J Pathol. 1990;  137 755-759
  • 230 Griffiths L, Stratford I J. Platelet-derived endothelial cell growth factor thymidine phosphorylase in tumor growth and response to therapy.  Br J Cancer. 1997;  76 689-693
  • 231 Betsholtz C, Karlson L, Lindahl P. Developmental roles of platelet-derived growth factors.  Bioessays. 2001;  23 494-507
  • 232 Ceni E, Granchi D, Vancini M, Pizzoferrato A. Platelet release of transforming growth factor-beta and beta-thromboglobulin after in vitro contact with acrylic bone cements.  Biomaterials. 2002;  23 1479-1484
  • 233 Li J J, Huang Y Q, Basch R, Karpatkin S. Thrombin induces the release of angiopoietin-1 from platelets.  Thromb Haemost. 2001;  85 204-206
  • 234 Good D J, Polverini P J, Rastinejad F et al.. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin.  Proc Natl Acad Sci USA. 1990;  87 6624-6628
  • 235 Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis.  Nature. 1982;  297 307-312
  • 236 Ma L, Hollenberg M D, Wallace J L. Thrombin-induced platelet endostatin release is blocked by a protamine activated receptor-4 (PAR-4) antagonist.  Br J Pharmacol. 2001;  134 701-704
  • 237 Yokoyama Y, Charnock-Jones D S, Licence D et al.. Expression of vascular endothelial growth factor (VEGF)-D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma.  Clin Cancer Res. 2003;  9 1361-1369
  • 238 Pizurki L, Zhou Z, Glynos K, Roussos C, Papapetropoulos A. Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production.  Br J Pharmacol. 2003;  139 329-336
  • 239 Stoeltzing O, Ahmad S A, Liu W et al.. Angiopoietin-1 inhibits tumor growth and ascites formation in a murine model of peritoneal carcinomatosis.  Br J Cancer. 2002;  87 1182-1187
  • 240 Selheim F, Fukami M H, Holmsen H, Vassbotn F S. Platelet-derived-growth-factor-induced signaling in human platelets: phosphoinositide-3-kinase-dependent inhibition of platelet activation.  Biochem J. 2000;  350 469-475
  • 241 Selheim F, Holmsen H, Vassbotn F S. Identification of functional VEGF receptors on human platelets.  FEBS Lett. 2002;  512 107-110
  • 242 Tsiamis A C, Hayes P, Box H et al.. Characterization and regulation of the receptor tyrosine kinase Tie-1 in platelets.  J Vasc Res. 2000;  37 437-442
  • 243 Carmeliet P. Biomedicine. Clotting factors build blood vessels.  Science. 2001;  31 1602-1604
  • 244 Kalluri R. Angiogenesis: basement membranes: structure, assembly and role in tumor angiogenesis.  Nat Rev Cancer. 2003;  3 422-433
  • 245 Kuenan B C, Levi M, Meijers J C et al.. Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine, and angiogenesis inhibitor SU 5416.  J Clin Oncol. 2003;  21 2192-2198

Marek Z WojtukiewiczM.D. 

Department of Oncology, Medical University

12 Ogrodowa St, 15-027 Bialystok, Poland

Email: mwojtuk@polbox.com

    >