Semin Respir Crit Care Med 2011; 32(1): 032-043
DOI: 10.1055/s-0031-1272867
© Thieme Medical Publishers

Evolving Concepts in Lung Carcinogenesis

Brigitte N. Gomperts1 , 2 , Avrum Spira3 , Pierre P. Massion4 , 5 , Tonya C. Walser1 , Ignacio I. Wistuba6 , John D. Minna7 , Steven M. Dubinett1 , 8
  • 1Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
  • 2Department of Pediatrics, Division of Hematology and Oncology, Mattel Children's Hospital at UCLA, Los Angeles, California
  • 3Department of Medicine, Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts
  • 4Department of Medicine, Department of Cancer Biology, Thoracic Oncology Center, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
  • 5Division of Pulmonary and Critical Care Medicine, Veterans Affairs Medical Center, Nashville, Tennessee
  • 6Department of Pathology, Department of Thoracic/Head and Neck Medical Oncology, M. D. Anderson Cancer Center, Houston, Texas
  • 7Department of Medicine, Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
  • 8Department of Pathology and Laboratory Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
Further Information

Publication History

Publication Date:
15 April 2011 (online)

ABSTRACT

Lung carcinogenesis is a complex, stepwise process that involves the acquisition of genetic mutations and epigenetic changes that alter cellular processes, such as proliferation, differentiation, invasion, and metastasis. Here, we review some of the latest concepts in the pathogenesis of lung cancer and highlight the roles of inflammation, the “field of cancerization,” and lung cancer stem cells in the initiation of the disease. Furthermore, we review how high throughput genomics, transcriptomics, epigenomics, and proteomics are advancing the study of lung carcinogenesis. Finally, we reflect on the potential of current in vitro and in vivo models of lung carcinogenesis to advance the field and on the areas of investigation where major breakthroughs will lead to the identification of novel chemoprevention strategies and therapies for lung cancer.

REFERENCES

  • 1 Dakubo G D, Jakupciak J P, Birch-Machin M A, Parr R L. Clinical implications and utility of field cancerization.  Cancer Cell Int. 2007;  7 2
  • 2 Slaughter D P, Southwick H W, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin.  Cancer. 1953;  6 (5) 963-968
  • 3 Auerbach O, Hammond E C, Kirman D, Garfinkel L. Effects of cigarette smoking on dogs, II: Pulmonary neoplasms.  Arch Environ Health. 1970;  21 (6) 754-768
  • 4 Guo M, House M G, Hooker C et al.. Promoter hypermethylation of resected bronchial margins: a field defect of changes?.  Clin Cancer Res. 2004;  10 (15) 5131-5136
  • 5 Franklin W A, Gazdar A F, Haney J et al.. Widely dispersed p53 mutation in respiratory epithelium: a novel mechanism for field carcinogenesis.  J Clin Invest. 1997;  100 (8) 2133-2137
  • 6 Mao L, Lee J S, Kurie J M et al.. Clonal genetic alterations in the lungs of current and former smokers.  J Natl Cancer Inst. 1997;  89 (12) 857-862
  • 7 Steiling K, Ryan J, Brody J S, Spira A. The field of tissue injury in the lung and airway.  Cancer Prev Res (Phila). 2008;  1 (6) 396-403
  • 8 Tang X, Shigematsu H, Bekele B N et al.. EGFR tyrosine kinase domain mutations are detected in histologically normal respiratory epithelium in lung cancer patients.  Cancer Res. 2005;  65 (17) 7568-7572
  • 9 Wistuba I I, Lam S, Behrens C et al.. Molecular damage in the bronchial epithelium of current and former smokers.  J Natl Cancer Inst. 1997;  89 (18) 1366-1373
  • 10 Nelson M A, Wymer J, Clements Jr N. Detection of K-ras gene mutations in non-neoplastic lung tissue and lung cancers.  Cancer Lett. 1996;  103 (1) 115-121
  • 11 Powell C A, Klares S, O'Connor G, Brody J S. Loss of heterozygosity in epithelial cells obtained by bronchial brushing: clinical utility in lung cancer.  Clin Cancer Res. 1999;  5 (8) 2025-2034
  • 12 Tang X, Varella-Garcia M, Xavier A C et al.. Epidermal growth factor receptor abnormalities in the pathogenesis and progression of lung adenocarcinomas.  Cancer Prev Res (Phila). 2008;  1 (3) 192-200
  • 13 Hackett N R, Heguy A, Harvey B G et al.. Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers.  Am J Respir Cell Mol Biol. 2003;  29 (3 Pt 1) 331-343
  • 14 Spira A, Beane J, Shah V et al.. Effects of cigarette smoke on the human airway epithelial cell transcriptome.  Proc Natl Acad Sci U S A. 2004;  101 (27) 10143-10148
  • 15 Spira A, Beane J E, Shah V et al.. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer.  Nat Med. 2007;  13 (3) 361-366
  • 16 Beane J, Sebastiani P, Whitfield T H et al.. A prediction model for lung cancer diagnosis that integrates genomic and clinical features.  Cancer Prev Res (Phila). 2008;  1 (1) 56-64
  • 17 Bhutani M, Pathak A K, Fan Y H et al.. Oral epithelium as a surrogate tissue for assessing smoking-induced molecular alterations in the lungs.  Cancer Prev Res (Phila). 2008;  1 (1) 39-44
  • 18 Sridhar S, Schembri F, Zeskind J et al.. Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium.  BMC Genomics. 2008;  9 259
  • 19 Miyazu Y M, Miyazawa T, Hiyama K et al.. Telomerase expression in noncancerous bronchial epithelia is a possible marker of early development of lung cancer.  Cancer Res. 2005;  65 (21) 9623-9627
  • 20 Ocak S, Sos M L, Thomas R K, Massion P P. High-throughput molecular analysis in lung cancer: insights into biology and potential clinical applications.  Eur Respir J. 2009;  34 (2) 489-506
  • 21 Esteller M, Fraga M F, Paz M F et al.. Cancer epigenetics and methylation.  Science. 2002;  297 1807-1808 discussion 1807-1808
  • 22 Ahrendt S A, Chow J T, Xu L H et al.. Molecular detection of tumor cells in bronchoalveolar lavage fluid from patients with early stage lung cancer.  J Natl Cancer Inst. 1999;  91 (4) 332-339
  • 23 Cheng X, Blumenthal R M. Mammalian DNA methyltransferases: a structural perspective.  Structure. 2008;  16 (3) 341-350
  • 24 Métivier R, Gallais R, Tiffoche C et al.. Cyclical DNA methylation of a transcriptionally active promoter.  Nature. 2008;  452 (7183) 45-50
  • 25 Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin S B, Herman J G. Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients.  Cancer Res. 1999;  59 (1) 67-70
  • 26 Belinsky S A, Palmisano W A, Gilliland F D et al.. Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers.  Cancer Res. 2002;  62 (8) 2370-2377
  • 27 Ng C S, Zhang J, Wan S et al.. Tumor p16M is a possible marker of advanced stage in non-small cell lung cancer.  J Surg Oncol. 2002;  79 (2) 101-106
  • 28 Palmisano W A, Divine K K, Saccomanno G et al.. Predicting lung cancer by detecting aberrant promoter methylation in sputum.  Cancer Res. 2000;  60 (21) 5954-5958
  • 29 Brock M V, Hooker C M, Ota-Machida E et al.. DNA methylation markers and early recurrence in stage I lung cancer.  N Engl J Med. 2008;  358 (11) 1118-1128
  • 30 Zhong S, Fields C R, Su N, Pan Y X, Robertson K D. Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer.  Oncogene. 2007;  26 (18) 2621-2634
  • 31 Rauch T A, Zhong X, Wu X et al.. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer.  Proc Natl Acad Sci U S A. 2008;  105 (1) 252-257
  • 32 Brena R M, Morrison C, Liyanarachchi S et al.. Aberrant DNA methylation of OLIG1, a novel prognostic factor in non-small cell lung cancer.  PLoS Med. 2007;  4 (3) e108
  • 33 Brehm A, Miska E A, McCance D J, Reid J L, Bannister A J, Kouzarides T. Retinoblastoma protein recruits histone deacetylase to repress transcription.  Nature. 1998;  391 (6667) 597-601
  • 34 Mukhopadhyay N K, Weisberg E, Gilchrist D, Bueno R, Sugarbaker D J, Jaklitsch M T. Effectiveness of trichostatin A as a potential candidate for anticancer therapy in non-small-cell lung cancer.  Ann Thorac Surg. 2006;  81 (3) 1034-1042
  • 35 Kim S M, Kee H J, Eom G H et al.. Characterization of a novel WHSC1-associated SET domain protein with H3K4 and H3K27 methyltransferase activity.  Biochem Biophys Res Commun. 2006;  345 (1) 318-323
  • 36 Loprevite M, Tiseo M, Grossi F et al.. In vitro study of CI-994, a histone deacetylase inhibitor, in non-small cell lung cancer cell lines.  Oncol Res. 2005;  15 (1) 39-48
  • 37 Kouzarides T. Chromatin modifications and their function.  Cell. 2007;  128 (4) 693-705
  • 38 Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing.  Cell. 2003;  113 (6) 673-676
  • 39 Yanaihara N, Caplen N, Bowman E et al.. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.  Cancer Cell. 2006;  9 (3) 189-198
  • 40 Takamizawa J, Konishi H, Yanagisawa K et al.. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival.  Cancer Res. 2004;  64 (11) 3753-3756
  • 41 Johnson S M, Grosshans H, Shingara J et al.. RAS is regulated by the let-7 microRNA family.  Cell. 2005;  120 (5) 635-647
  • 42 Kumar M S, Erkeland S J, Pester R E et al.. Suppression of non-small cell lung tumor development by the let-7 microRNA family.  Proc Natl Acad Sci U S A. 2008;  105 (10) 3903-3908
  • 43 Trang P, Medina P P, Wiggins J F et al.. Regression of murine lung tumors by the let-7 microRNA.  Oncogene. 2010;  29 (11) 1580-1587
  • 44 Ender C, Krek A, Friedländer M R et al.. A human snoRNA with microRNA-like functions.  Mol Cell. 2008;  32 (4) 519-528
  • 45 Eiring A M, Harb J G, Neviani P et al.. miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA translation in leukemic blasts.  Cell. 2010;  140 (5) 652-665
  • 46 Agulló-Ortuño M T, López-Ríos F, Paz-Ares L. Lung cancer genomic signatures.  J Thorac Oncol. 2010;  5 (10) 1673-1691
  • 47 Boland C R, Thibodeau S N, Hamilton S R et al.. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.  Cancer Res. 1998;  58 (22) 5248-5257
  • 48 Pinkel D, Segraves R, Sudar D et al.. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays.  Nat Genet. 1998;  20 (2) 207-211
  • 49 Pollack J R, Perou C M, Alizadeh A A et al.. Genome-wide analysis of DNA copy-number changes using cDNA microarrays.  Nat Genet. 1999;  23 (1) 41-46
  • 50 Ishkanian A S, Malloff C A, Watson S K et al.. A tiling resolution DNA microarray with complete coverage of the human genome.  Nat Genet. 2004;  36 (3) 299-303
  • 51 Imoto I, Yuki Y, Sonoda I et al.. Identification of ZASC1 encoding a Krüppel-like zinc finger protein as a novel target for 3q26 amplification in esophageal squamous cell carcinomas.  Cancer Res. 2003;  63 (18) 5691-5696
  • 52 Singh B, Gogineni S K, Sacks P G et al.. Molecular cytogenetic characterization of head and neck squamous cell carcinoma and refinement of 3q amplification.  Cancer Res. 2001;  61 (11) 4506-4513
  • 53 Levin N A, Brzoska P M, Warnock M L, Gray J W, Christman M F. Identification of novel regions of altered DNA copy number in small cell lung tumors.  Genes Chromosomes Cancer. 1995;  13 (3) 175-185
  • 54 Amos C I, Wu X, Broderick P et al.. Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1  Nat Genet. 2008;  40 (5) 616-622
  • 55 Hung R J, McKay J D, Gaborieau V et al.. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.  Nature. 2008;  452 (7187) 633-637
  • 56 Thorgeirsson T E, Geller F, Sulem P et al.. A variant associated with nicotine dependence, lung cancer and peripheral arterial disease.  Nature. 2008;  452 (7187) 638-642
  • 57 Gustafson A M, Soldi R, Anderlind C et al.. Airway PI3K pathway activation is an early and reversible event in lung cancer development.  Sci Transl Med. 2010;  2 (26) 26ra25
  • 58 Yanagisawa K, Shyr Y, Xu B J et al.. Proteomic patterns of tumour subsets in non-small-cell lung cancer.  Lancet. 2003;  362 (9382) 433-439
  • 59 Rahman S M, Shyr Y, Yildiz P B et al.. Proteomic patterns of preinvasive bronchial lesions.  Am J Respir Crit Care Med. 2005;  172 (12) 1556-1562
  • 60 Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability.  Carcinogenesis. 2009;  30 (7) 1073-1081
  • 61 Brody J S, Spira A. State of the art: chronic obstructive pulmonary disease, inflammation, and lung cancer.  Proc Am Thorac Soc. 2006;  3 (6) 535-537
  • 62 Smith C J, Perfetti T A, King J A. Perspectives on pulmonary inflammation and lung cancer risk in cigarette smokers.  Inhal Toxicol. 2006;  18 (9) 667-677
  • 63 Dubinett S M, Sharma S, Huang M, Dohadwala M, Pold M, Mao J T. Cyclooxygenase-2 in lung cancer.  Prog Exp Tumor Res. 2003;  37 138-162
  • 64 Dohadwala M, Batra R K, Luo J et al.. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion.  J Biol Chem. 2002;  277 (52) 50828-50833
  • 65 Lee J M, Mao J T, Krysan K, Dubinett S M. Significance of cyclooxygenase-2 in prognosis, targeted therapy and chemoprevention of NSCLC.  Future Oncol. 2007;  3 (2) 149-153
  • 66 Khuri F R, Wu H, Lee J J et al.. Cyclooxygenase-2 overexpression is a marker of poor prognosis in stage I non-small cell lung cancer.  Clin Cancer Res. 2001;  7 (4) 861-867
  • 67 Tsubochi H, Sato N, Hiyama M et al.. Combined analysis of cyclooxygenase-2 expression with p53 and Ki-67 in nonsmall cell lung cancer.  Ann Thorac Surg. 2006;  82 (4) 1198-1204
  • 68 Kim H S, Youm H R, Lee J S, Min K W, Chung J H, Park C S. Correlation between cyclooxygenase-2 and tumor angiogenesis in non-small cell lung cancer.  Lung Cancer. 2003;  42 (2) 163-170
  • 69 Huang M, Stolina M, Sharma S et al.. Non-small cell lung cancer cyclooxygenase-2-dependent regulation of cytokine balance in lymphocytes and macrophages: up-regulation of interleukin 10 and down-regulation of interleukin 12 production.  Cancer Res. 1998;  58 (6) 1208-1216
  • 70 Mao J T, Cui X, Reckamp K et al.. Chemoprevention strategies with cyclooxygenase-2 inhibitors for lung cancer.  Clin Lung Cancer. 2005;  7 (1) 30-39
  • 71 Subbaramaiah K, Altorki N, Chung W J, Mestre J R, Sampat A, Dannenberg A J. Inhibition of cyclooxygenase-2 gene expression by p53.  J Biol Chem. 1999;  274 (16) 10911-10915
  • 72 Csiki I, Yanagisawa K, Haruki N et al.. Thioredoxin-1 modulates transcription of cyclooxygenase-2 via hypoxia-inducible factor-1alpha in non-small cell lung cancer.  Cancer Res. 2006;  66 (1) 143-150
  • 73 Cui X, Zhang L, Luo J et al.. Unphosphorylated STAT6 contributes to constitutive cyclooxygenase-2 expression in human non-small cell lung cancer.  Oncogene. 2007;  26 (29) 4253-4260
  • 74 Heuze-Vourc'h N, Zhu L, Krysan K, Batra R K, Sharma S, Dubinett S M. Abnormal interleukin 10Ralpha expression contributes to the maintenance of elevated cyclooxygenase-2 in non-small cell lung cancer cells.  Cancer Res. 2003;  63 (4) 766-770
  • 75 Krysan K, Merchant F H, Zhu L et al.. COX-2-dependent stabilization of survivin in non-small cell lung cancer.  FASEB J. 2004;  18 (1) 206-208
  • 76 Põld M, Krysan K, Põld A et al.. Cyclooxygenase-2 modulates the insulin-like growth factor axis in non-small-cell lung cancer.  Cancer Res. 2004;  64 (18) 6549-6555
  • 77 Sharma S, Stolina M, Yang S C et al.. Tumor cyclooxygenase 2-dependent suppression of dendritic cell function.  Clin Cancer Res. 2003;  9 (3) 961-968
  • 78 Põld M, Zhu L X, Sharma S et al.. Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC Ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer.  Cancer Res. 2004;  64 (5) 1853-1860
  • 79 Dohadwala M, Batra R K, Luo J et al.. Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion.  J Biol Chem. 2002;  277 (52) 50828-50833
  • 80 Dohadwala M, Yang S-C, Luo J et al.. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer.  Cancer Res. 2006;  66 (10) 5338-5345
  • 81 Yang L, Huang Y, Porta R et al.. Host and direct antitumor effects and profound reduction in tumor metastasis with selective EP4 receptor antagonism.  Cancer Res. 2006;  66 (19) 9665-9672
  • 82 Lee J M, Dedhar S, Kalluri R, Thompson E W. The epithelial-mesenchymal transition: new insights in signaling, development, and disease.  J Cell Biol. 2006;  172 (7) 973-981
  • 83 Mani S A, Guo W, Liao M J et al.. The epithelial-mesenchymal transition generates cells with properties of stem cells.  Cell. 2008;  133 (4) 704-715
  • 84 Krysan K, Lee J M, Dohadwala M et al.. Inflammation, epithelial to mesenchymal transition, and epidermal growth factor receptor tyrosine kinase inhibitor resistance.  J Thorac Oncol. 2008;  3 (2) 107-110
  • 85 Gotzmann J, Mikula M, Eger A et al.. Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis.  Mutat Res. 2004;  566 (1) 9-20
  • 86 Huber M A, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transition during tumor progression.  Curr Opin Cell Biol. 2005;  17 (5) 548-558
  • 87 Radisky D C, LaBarge M A. Epithelial-mesenchymal transition and the stem cell phenotype.  Cell Stem Cell. 2008;  2 (6) 511-512
  • 88 St John M A, Dohadwala M, Luo J et al.. Proinflammatory mediators upregulate snail in head and neck squamous cell carcinoma.  Clin Cancer Res. 2009;  15 (19) 6018-6027
  • 89 Baratelli F, Lin Y, Zhu L et al.. Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4 + T cells.  J Immunol. 2005;  175 (3) 1483-1490
  • 90 Gavin M A, Rasmussen J P, Fontenot J D et al.. Foxp3-dependent programme of regulatory T-cell differentiation.  Nature. 2007;  445 (7129) 771-775
  • 91 Krysan K, Reckamp K L, Dalwadi H et al.. Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner.  Cancer Res. 2005;  65 (14) 6275-6281
  • 92 Ailles L E, Weissman I L. Cancer stem cells in solid tumors.  Curr Opin Biotechnol. 2007;  18 (5) 460-466
  • 93 Boman B M, Wicha M S. Cancer stem cells: a step toward the cure.  J Clin Oncol. 2008;  26 (17) 2795-2799
  • 94 Clarke M F, Fuller M. Stem cells and cancer: two faces of eve.  Cell. 2006;  124 (6) 1111-1115
  • 95 Huntly B J, Gilliland D G. Cancer biology: summing up cancer stem cells.  Nature. 2005;  435 (7046) 1169-1170
  • 96 McDonald S A, Graham T A, Schier S, Wright N A, Alison M R. Stem cells and solid cancers.  Virchows Arch. 2009;  455 (1) 1-13
  • 97 Rosen J M, Jordan C T. The increasing complexity of the cancer stem cell paradigm.  Science. 2009;  324 (5935) 1670-1673
  • 98 Visvader J E, Lindeman G J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions.  Nat Rev Cancer. 2008;  8 (10) 755-768
  • 99 Ward R J, Dirks P B. Cancer stem cells: at the headwaters of tumor development.  Annu Rev Pathol. 2007;  2 175-189
  • 100 Kim C F, Jackson E L, Woolfenden A E et al.. Identification of bronchioalveolar stem cells in normal lung and lung cancer.  Cell. 2005;  121 (6) 823-835
  • 101 Curtis S J, Sinkevicius K W, Li D et al.. Primary tumor genotype is an important determinant in identification of lung cancer propagating cells.  Cell Stem Cell. 2010;  7 (1) 127-133
  • 102 Moreb J S. Aldehyde dehydrogenase as a marker for stem cells.  Curr Stem Cell Res Ther. 2008;  3 (4) 237-246
  • 103 Storms R W, Trujillo A P, Springer J B et al.. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity.  Proc Natl Acad Sci U S A. 1999;  96 (16) 9118-9123
  • 104 Carpentino J E, Hynes M J, Appelman H D et al.. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer.  Cancer Res. 2009;  69 (20) 8208-8215
  • 105 Chen Y C, Chen Y W, Hsu H S et al.. Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer.  Biochem Biophys Res Commun. 2009;  385 (3) 307-313
  • 106 Huang E H, Hynes M J, Zhang T et al.. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis.  Cancer Res. 2009;  69 (8) 3382-3389
  • 107 Jiang F, Qiu Q, Khanna A et al.. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer.  Mol Cancer Res. 2009;  7 (3) 330-338
  • 108 Eramo A, Lotti F, Sette G et al.. Identification and expansion of the tumorigenic lung cancer stem cell population.  Cell Death Differ. 2008;  15 (3) 504-514
  • 109 Salnikov A V, Gladkich J, Moldenhauer G, Volm M, Mattern J, Herr I. CD133 is indicative for a resistance phenotype but does not represent a prognostic marker for survival of non-small cell lung cancer patients.  Int J Cancer. 2010;  126 (4) 950-958
  • 110 Bertolini G, Roz L, Perego P et al.. Highly tumorigenic lung cancer CD133 + cells display stem-like features and are spared by cisplatin treatment.  Proc Natl Acad Sci U S A. 2009;  106 (38) 16281-16286
  • 111 Li F, Zeng H, Ying K. The combination of stem cell markers CD133 and ABCG2 predicts relapse in stage I non-small cell lung carcinomas.  Med Oncol. 2010;  Aug 18. [Epub ahead of print]
  • 112 Engelhardt J F, Schlossberg H, Yankaskas J R, Dudus L. Progenitor cells of the adult human airway involved in submucosal gland development.  Development. 1995;  121 (7) 2031-2046
  • 113 Hong K U, Reynolds S D, Watkins S, Fuchs E, Stripp B R. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations.  Am J Physiol Lung Cell Mol Physiol. 2004;  286 (4) L643-L649
  • 114 Rock J R, Onaitis M W, Rawlins E L et al.. Basal cells as stem cells of the mouse trachea and human airway epithelium.  Proc Natl Acad Sci U S A. 2009;  106 (31) 12771-12775
  • 115 Schoch K G, Lori A, Burns K A, Eldred T, Olsen J C, Randell S H. A subset of mouse tracheal epithelial basal cells generates large colonies in vitro.  Am J Physiol Lung Cell Mol Physiol. 2004;  286 (4) L631-L642
  • 116 Ooi A T, Mah V, Nickerson D W et al.. Presence of a putative tumor-initiating progenitor cell population predicts poor prognosis in smokers with non-small cell lung cancer.  Cancer Res. 2010;  70 (16) 6639-6648
  • 117 Sánchez-García I. The crossroads of oncogenesis and metastasis.  N Engl J Med. 2009;  360 (3) 297-299
  • 118 Mani S A, Guo W, Liao M-J et al.. The epithelial-mesenchymal transition generates cells with properties of stem cells.  Cell. 2008;  133 (4) 704-715
  • 119 Yu M, Smolen G A, Zhang J et al.. A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression.  Genes Dev. 2009;  23 (15) 1737-1742
  • 120 Wellner U, Schubert J, Burk U C et al.. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs.  Nat Cell Biol. 2009;  11 (12) 1487-1495
  • 121 Yanagawa J, Walser T C, Zhu L X et al.. Snail promotes CXCR2 ligand-dependent tumor progression in non-small cell lung carcinoma.  Clin Cancer Res. 2009;  15 (22) 6820-6829
  • 122 Walser T C, Yanagawa J, Luo J et al.. Snail-induced and EMT-mediated early lung cancer development: promotion of invasion and expansion of stem cell populations. [abstract] Paper presented at: Proceedings of the Seventh Annual AACR International Conference on Frontiers in Cancer Prevention Research; November 16–19, 2008; Washington, DC
  • 123 Wicha M S, Liu S L, Dontu G. Cancer stem cells: an old idea—a paradigm shift.  Cancer Res. 2006;  66 (4) 1883-1890 discussion 1895-1896
  • 124 Sun S, Schiller J H, Gazdar A F. Lung cancer in never smokers—a different disease.  Nat Rev Cancer. 2007;  7 (10) 778-790
  • 125 Fan X, Matsui W, Khaki L et al.. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors.  Cancer Res. 2006;  66 (15) 7445-7452
  • 126 Farnie G, Clarke R B. Mammary stem cells and breast cancer—role of Notch signalling.  Stem Cell Rev. 2007;  3 (2) 169-175
  • 127 Konishi J, Kawaguchi K S, Vo H et al.. Gamma-secretase inhibitor prevents Notch3 activation and reduces proliferation in human lung cancers.  Cancer Res. 2007;  67 (17) 8051-8057
  • 128 Westhoff B, Colaluca I N, D'Ario G et al.. Alterations of the Notch pathway in lung cancer.  Proc Natl Acad Sci U S A. 2009;  106 (52) 22293-22298
  • 129 Meuwissen R, Berns A. Mouse models for human lung cancer.  Genes Dev. 2005;  19 (6) 643-664
  • 130 Olive K P, Tuveson D A, Ruhe Z C et al.. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome.  Cell. 2004;  119 (6) 847-860
  • 131 Hoffman J A, Giraudo E, Singh M et al.. Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma.  Cancer Cell. 2003;  4 (5) 383-391
  • 132 Sato M, Vaughan M B, Girard L et al.. Multiple oncogenic changes (K-RAS(V12), p53 knockdown, mutant EGFRs, p16 bypass, telomerase) are not sufficient to confer a full malignant phenotype on human bronchial epithelial cells.  Cancer Res. 2006;  66 (4) 2116-2128
  • 133 Vaughan M B, Ramirez R D, Wright W E, Minna J D, Shay J W. A three-dimensional model of differentiation of immortalized human bronchial epithelial cells.  Differentiation. 2006;  74 (4) 141-148

Brigitte N GompertsM.D. 

Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at UCLA

10833 Le Conte Ave., A2-410 MDCC, Los Angeles, CA 90095

Email: bgomperts@mednet.ucla.edu

    >