Semin Reprod Med 2009; 27(1): 014-023
DOI: 10.1055/s-0028-1108006
© Thieme Medical Publishers

Roles for Transforming Growth Factor Beta Superfamily Proteins in Early Folliculogenesis

Daniel J. Trombly1 , 3 , Teresa K. Woodruff1 , 2 , 3 , Kelly E. Mayo1 , 3
  • 1Department of Biochemistry, Molecular Biology & Cell Biology and Center for Reproductive Science, Northwestern University, Chicago, Illinois
  • 2Department of Obstetrics & Gynecology, Northwestern University, Chicago, Illinois
  • 3Northwestern University, Chicago, Illinois
Further Information

Publication History

Publication Date:
05 February 2009 (online)

ABSTRACT

Primordial follicle formation and the subsequent transition of follicles to the primary and secondary stages encompass the early events during folliculogenesis in mammals. These processes establish the ovarian follicle pool and prime follicles for entry into subsequent growth phases during the reproductive cycle. Perturbations during follicle formation can affect the size of the primordial follicle pool significantly, and alterations in follicle transition can cause follicles to arrest at immature stages or result in premature depletion of the follicle reserve. Determining the molecular events that regulate primordial follicle formation and early follicle growth may lead to the development of new fertility treatments. Over the last decade, many of the growth factors and signaling proteins that mediate the early stages of folliculogenesis have been identified using mouse genetic models, in vivo injection studies, and ex vivo organ culture approaches. These studies reveal important roles for the transforming growth factor β (TGF-β) superfamily of proteins in the ovary. This article reviews these roles for TGF-β family proteins and focuses in particular on work from our laboratories on the functions of activin in early folliculogenesis.

REFERENCES

  • 1 Molyneaux K A, Stallock J, Schaible K, Wylie C. Time-lapse analysis of living mouse germ cell migration.  Dev Biol. 2001;  240(2) 488-498
  • 2 Pepling M E, Spradling A C. Female mouse germ cells form synchronously dividing cysts.  Development. 1998;  125(17) 3323-3328
  • 3 Pepling M E, Spradling A C. Mouse ovarian germ cell cysts undergo programmed breakdown to form primordial follicles.  Dev Biol. 2001;  234(2) 339-351
  • 4 Van Wagenen G, Simpson M E. Embryology of the ovary and testis: Homo sapiens and Macaca mulatta . New Haven, CT; Yale University Press 1965
  • 5 McGee E A, Hsueh A J. Initial and cyclic recruitment of ovarian follicles.  Endocr Rev. 2000;  21(2) 200-214
  • 6 Baker S J, Spears N. The role of intra-ovarian interactions in the regulation of follicle dominance.  Hum Reprod Update. 1999;  5(2) 153-165
  • 7 Barnett K R, Schilling C, Greenfeld C R, Tomic D, Flaws J A. Ovarian follicle development and transgenic mouse models.  Hum Reprod Update. 2006;  12(5) 537-555
  • 8 Richards J S. Perspective: the ovarian follicle—a perspective in 2001.  Endocrinology. 2001;  142(6) 2184-2193
  • 9 Epifano O, Dean J. Genetic control of early folliculogenesis in mice.  Trends Endocrinol Metab. 2002;  13(4) 169-173
  • 10 Pepling M E. From primordial germ cell to primordial follicle: mammalian female germ cell development.  Genesis. 2006;  44(12) 622-632
  • 11 Nilsson E E, Detzel C, Skinner M K. Platelet-derived growth factor modulates the primordial to primary follicle transition.  Reproduction. 2006;  131(6) 1007-1015
  • 12 Skinner M K. Regulation of primordial follicle assembly and development.  Hum Reprod Update. 2005;  11(5) 461-471
  • 13 Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus.  Cell. 2003;  113(6) 685-700
  • 14 Pangas S A, Matzuk M M. Genetic models for transforming growth factor beta superfamily signaling in ovarian follicle development.  Mol Cell Endocrinol. 2004;  225(1–2) 83-91
  • 15 Massague J. TGF-beta signal transduction.  Annu Rev Biochem. 1998;  67 753-791
  • 16 Shimasaki S, Moore R K, Otsuka F, Erickson G F. The bone morphogenetic protein system in mammalian reproduction.  Endocr Rev. 2004;  25(1) 72-101
  • 17 Kaivo-Oja N, Jeffery L A, Ritvos O, Mottershead D G. Smad signalling in the ovary.  Reprod Biol Endocrinol. 2006;  4 21
  • 18 Balemans W, Van Hul W. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators.  Dev Biol. 2002;  250(2) 231-250
  • 19 Lutz M, Knaus P. Integration of the TGF-beta pathway into the cellular signalling network.  Cell Signal. 2002;  14(12) 977-988
  • 20 Juengel J L, McNatty K P. The role of proteins of the transforming growth factor-beta superfamily in the intraovarian regulation of follicular development.  Hum Reprod Update. 2005;  11(2) 143-160
  • 21 Kulkarni A B, Huh C G, Becker D et al.. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death.  Proc Natl Acad Sci U S A. 1993;  90(2) 770-774
  • 22 Ingman W V, Robker R L, Woittiez K, Robertson S A. Null mutation in transforming growth factor beta1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest.  Endocrinology. 2006;  147(2) 835-845
  • 23 Muttukrishna S, Tannetta D, Groome N, Sargent I. Activin and follistatin in female reproduction.  Mol Cell Endocrinol. 2004;  225(1–2) 45-56
  • 24 Woodruff T K, D'Agostino J, Schwartz N B, Mayo K E. Dynamic changes in inhibin messenger RNAs in rat ovarian follicles during the reproductive cycle.  Science. 1988;  239(4845) 1296-1299
  • 25 Carroll R S, Corrigan A Z, Gharib S D, Vale W, Chin W W. Inhibin, activin, and follistatin: regulation of follicle-stimulating hormone messenger ribonucleic acid levels.  Mol Endocrinol. 1989;  3(12) 1969-1976
  • 26 Woodruff T K, Krummen L A, Lyon R J, Stocks D L, Mather J P. Recombinant human inhibin A and recombinant human activin A regulate pituitary and ovarian function in the adult female rat.  Endocrinology. 1993;  132(6) 2332-2341
  • 27 Lewis K A, Gray P C, Blount A L et al.. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling.  Nature. 2000;  404(6776) 411-414
  • 28 McMullen M L, Cho B N, Yates C J, Mayo K E. Gonadal pathologies in transgenic mice expressing the rat inhibin alpha-subunit.  Endocrinology. 2001;  142(11) 5005-5014
  • 29 Nakamura T, Takio K, Eto Y et al.. Activin-binding protein from rat ovary is follistatin.  Science. 1990;  247(4944) 836-838
  • 30 Findlay J K. An update on the roles of inhibin, activin, and follistatin as local regulators of folliculogenesis.  Biol Reprod. 1993;  48(1) 15-23
  • 31 Nahum R, Thong K J, Hillier S G. Metabolic regulation of androgen production by human thecal cells in vitro.  Hum Reprod. 1995;  10(1) 75-81
  • 32 Bristol-Gould S K, Kreeger P K, Selkirk C G et al.. Postnatal regulation of germ cells by activin: the establishment of the initial follicle pool.  Dev Biol. 2006;  298(1) 132-148
  • 33 Martins da Silva S J, Bayne R A, Cambray N et al.. Expression of activin subunits and receptors in the developing human ovary: activin A promotes germ cell survival and proliferation before primordial follicle formation.  Dev Biol. 2004;  266(2) 334-345
  • 34 Weng Q, Wang H, Medan S, et al.. Expression of inhibin/activin subunits in the ovaries of fetal and neonatal mice.  J Reprod Dev. 2006;  52(5) 607-616
  • 35 Matzuk M M, Finegold M J, Mather J P et al.. Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice.  Proc Natl Acad Sci U S A. 1994;  91(19) 8817-8821
  • 36 Kipp J L, Kilen S M, Bristol-Gould S, Woodruff T K, Mayo K E. Neonatal exposure to estrogens suppresses activin expression and signaling in the mouse ovary.  Endocrinology. 2007;  148(5) 1968-1976
  • 37 Iguchi T, Fukazawa Y, Uesugi Y, Takasugi N. Polyovular follicles in mouse ovaries exposed neonatally to diethylstilbestrol in vivo and in vitro.  Biol Reprod. 1990;  43(3) 478-484
  • 38 Iguchi T, Takasugi N, Bern H A, Mills K T. Frequent occurrence of polyovular follicles in ovaries of mice exposed neonatally to diethylstilbestrol.  Teratology. 1986;  34(1) 29-35
  • 39 Jefferson W, Newbold R, Padilla-Banks E, Pepling M. Neonatal genistein treatment alters ovarian differentiation in the mouse: inhibition of oocyte nest breakdown and increased oocyte survival.  Biol Reprod. 2006;  74(1) 161-168
  • 40 Jefferson W N, Couse J F, Padilla-Banks E, Korach K S, Newbold R R. Neonatal exposure to genistein induces estrogen receptor (ER)alpha expression and multioocyte follicles in the maturing mouse ovary: evidence for ERbeta-mediated and nonestrogenic actions.  Biol Reprod. 2002;  67(4) 1285-1296
  • 41 Chen Y, Jefferson W N, Newbold R R, Padilla-Banks E, Pepling M E. Estradiol, progesterone, and genistein inhibit oocyte nest breakdown and primordial follicle assembly in the neonatal mouse ovary in vitro and in vivo.  Endocrinology. 2007;  148(8) 3580-3590
  • 42 Kezele P, Skinner M K. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly.  Endocrinology. 2003;  144(8) 3329-3337
  • 43 Albrecht E D, Pepe G J. Endocrinology of pregnancy. In: Brans YW, Kuehl TJ Non-Human Primates in Perinatal Research. New York, NY; John Wiley and Sons 1988: 13-78
  • 44 Zachos N C, Billiar R B, Albrecht E D, Pepe G J. Developmental regulation of baboon fetal ovarian maturation by estrogen.  Biol Reprod. 2002;  67(4) 1148-1156
  • 45 Billiar R B, Zachos N C, Burch M G, Albrecht E D, Pepe G J. Up-regulation of alpha-inhibin expression in the fetal ovary of estrogen-suppressed baboons is associated with impaired fetal ovarian folliculogenesis.  Biol Reprod. 2003;  68(6) 1989-1996
  • 46 Bristol-Gould S K, Hutten C G, Sturgis C et al.. The development of a mouse model of ovarian endosalpingiosis.  Endocrinology. 2005;  146(12) 5228-5236
  • 47 Pangas S A, Jorgez C J, Tran M et al.. Intraovarian activins are required for female fertility.  Mol Endocrinol. 2007;  21(10) 2458-2471
  • 48 Jamin S P, Arango N A, Mishina Y, Hanks M C, Behringer R R. Requirement of Bmpr1a for müllerian duct regression during male sexual development.  Nat Genet. 2002;  32(3) 408-410
  • 49 Jorgez C J, Klysik M, Jamin S P, Behringer R R, Matzuk M M. Granulosa cell-specific inactivation of follistatin causes female fertility defects.  Mol Endocrinol. 2004;  18(4) 953-967
  • 50 Drummond A E, Le M T, Ethier J F, Dyson M, Findlay J K. Expression and localization of activin receptors, Smads, and beta glycan to the postnatal rat ovary.  Endocrinology. 2002;  143(4) 1423-1433
  • 51 Patsch C, Edenhofer F. Conditional mutagenesis by cell-permeable proteins: potential, limitations and prospects.  Handb Exp Pharmacol. 2007;  178 203-232
  • 52 Li R, Phillips D M, Mather J P. Activin promotes ovarian follicle development in vitro.  Endocrinology. 1995;  136(3) 849-856
  • 53 Liu X, Andoh K, Abe Y et al.. A comparative study on transforming growth factor-beta and activin A for preantral follicles from adult, immature, and diethylstilbestrol-primed immature mice.  Endocrinology. 1999;  140(6) 2480-2485
  • 54 Yokota H, Yamada K, Liu X et al.. Paradoxical action of activin A on folliculogenesis in immature and adult mice.  Endocrinology. 1997;  138(11) 4572-4576
  • 55 Guo Q, Kumar T R, Woodruff T et al.. Overexpression of mouse follistatin causes reproductive defects in transgenic mice.  Mol Endocrinol. 1998;  12(1) 96-106
  • 56 Schmidt D, Ovitt C E, Anlag K et al.. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance.  Development. 2004;  131(4) 933-942
  • 57 Mizunuma H, Liu X, Andoh K et al.. Activin from secondary follicles causes small preantral follicles to remain dormant at the resting stage.  Endocrinology. 1999;  140(1) 37-42
  • 58 Fortune J E, Cushman R A, Wahl C M, Kito S. The primordial to primary follicle transition.  Mol Cell Endocrinol. 2000;  163(1–2) 53-60
  • 59 Munsterberg A, Lovell-Badge R. Expression of the mouse anti-müllerian hormone gene suggests a role in both male and female sexual differentiation.  Development. 1991;  113(2) 613-624
  • 60 Durlinger A L, Gruijters M J, Kramer P et al.. Anti-müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary.  Endocrinology. 2002;  143(3) 1076-1084
  • 61 Hirobe S, He W W, Lee M M, Donahoe P K. Müllerian inhibiting substance messenger ribonucleic acid expression in granulosa and Sertoli cells coincides with their mitotic activity.  Endocrinology. 1992;  131(2) 854-862
  • 62 Weenen C, Laven J S, Von Bergh A R et al.. Anti-müllerian hormone expression pattern in the human ovary: potential implications for initial and cyclic follicle recruitment.  Mol Hum Reprod. 2004;  10(2) 77-83
  • 63 Baarends W M, Uilenbroek J T, Kramer P et al.. Anti-müllerian hormone and anti-müllerian hormone type II receptor messenger ribonucleic acid expression in rat ovaries during postnatal development, the estrous cycle, and gonadotropin-induced follicle growth.  Endocrinology. 1995;  136(11) 4951-4962
  • 64 Shimasaki S, Zachow R J, Li D et al.. A functional bone morphogenetic protein system in the ovary.  Proc Natl Acad Sci U S A. 1999;  96(13) 7282-7287
  • 65 Behringer R R, Finegold M J, Cate R L. Müllerian-inhibiting substance function during mammalian sexual development.  Cell. 1994;  79(3) 415-425
  • 66 Durlinger A L, Kramer P, Karels B et al.. Control of primordial follicle recruitment by anti-müllerian hormone in the mouse ovary.  Endocrinology. 1999;  140(12) 5789-5796
  • 67 Carlsson I B, Scott J E, Visser J A et al.. Anti-müllerian hormone inhibits initiation of growth of human primordial ovarian follicles in vitro.  Hum Reprod. 2006;  21(9) 2223-2227
  • 68 Schmidt K L, Kryger-Baggesen N, Byskov A G, Andersen C Y. Anti-müllerian hormone initiates growth of human primordial follicles in vitro.  Mol Cell Endocrinol. 2005;  234(1–2) 87-93
  • 69 Behringer R R, Cate R L, Froelick G J, Palmiter R D, Brinster R L. Abnormal sexual development in transgenic mice chronically expressing müllerian inhibiting substance.  Nature. 1990;  345(6271) 167-170
  • 70 Lyet L, Louis F, Forest M G et al.. Ontogeny of reproductive abnormalities induced by deregulation of anti-müllerian hormone expression in transgenic mice.  Biol Reprod. 1995;  52(2) 444-454
  • 71 Mishina Y, Whitworth D J, Racine C, Behringer R R. High specificity of müllerian-inhibiting substance signaling in vivo.  Endocrinology. 1999;  140(5) 2084-2088
  • 72 Visser J A, Themmen A P. Anti-müllerian hormone and folliculogenesis.  Mol Cell Endocrinol. 2005;  234(1–2) 81-86
  • 73 de Vet A, Laven J S, de Jong F H, Themmen A P, Fauser B C. Antimüllerian hormone serum levels: a putative marker for ovarian aging.  Fertil Steril. 2002;  77(2) 357-362
  • 74 Nilsson E, Rogers N, Skinner M K. Actions of anti-müllerian hormone on the ovarian transcriptome to inhibit primordial to primary follicle transition.  Reproduction. 2007;  134(2) 209-221
  • 75 Nilsson E E, Skinner M K. Bone morphogenetic protein-4 acts as an ovarian follicle survival factor and promotes primordial follicle development.  Biol Reprod. 2003;  69(4) 1265-1272
  • 76 Lee W S, Otsuka F, Moore R K, Shimasaki S. Effect of bone morphogenetic protein-7 on folliculogenesis and ovulation in the rat.  Biol Reprod. 2001;  65(4) 994-999
  • 77 Lee W S, Yoon S J, Yoon T K et al.. Effects of bone morphogenetic protein-7 (BMP-7) on primordial follicular growth in the mouse ovary.  Mol Reprod Dev. 2004;  69(2) 159-163
  • 78 Elvin J A, Clark A T, Wang P, Wolfman N M, Matzuk M M. Paracrine actions of growth differentiation factor-9 in the mammalian ovary.  Mol Endocrinol. 1999;  13(6) 1035-1048
  • 79 McGrath S A, Esquela A F, Lee S J. Oocyte-specific expression of growth/differentiation factor-9.  Mol Endocrinol. 1995;  9(1) 131-136
  • 80 Aaltonen J, Laitinen M P, Vuojolainen K et al.. Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis.  J Clin Endocrinol Metab. 1999;  84(8) 2744-2750
  • 81 Jaatinen R, Laitinen M P, Vuojolainen K et al.. Localization of growth differentiation factor-9 (GDF-9) mRNA and protein in rat ovaries and cDNA cloning of rat GDF-9 and its novel homolog GDF-9B.  Mol Cell Endocrinol. 1999;  156(1–2) 189-193
  • 82 Dong J, Albertini D F, Nishimori K et al.. Growth differentiation factor-9 is required during early ovarian folliculogenesis.  Nature. 1996;  383(6600) 531-535
  • 83 Nilsson E E, Skinner M K. Growth and differentiation factor-9 stimulates progression of early primary but not primordial rat ovarian follicle development.  Biol Reprod. 2002;  67(3) 1018-1024
  • 84 Vitt U A, McGee E A, Hayashi M, Hsueh A J. In vivo treatment with GDF-9 stimulates primordial and primary follicle progression and theca cell marker CYP17 in ovaries of immature rats.  Endocrinology. 2000;  141(10) 3814-3820
  • 85 Hreinsson J G, Scott J E, Rasmussen C et al.. Growth differentiation factor-9 promotes the growth, development, and survival of human ovarian follicles in organ culture.  J Clin Endocrinol Metab. 2002;  87(1) 316-321
  • 86 Elvin J A, Yan C, Wang P, Nishimori K, Matzuk M M. Molecular characterization of the follicle defects in the growth differentiation factor 9-deficient ovary.  Mol Endocrinol. 1999;  13(6) 1018-1034
  • 87 McNatty K P, Juengel J L, Reader K L et al.. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function.  Reproduction. 2005;  129(4) 473-480
  • 88 Spicer L J, Aad P Y, Allen D T et al.. Growth differentiation factor 9 (GDF9) stimulates proliferation and inhibits steroidogenesis by bovine theca cells: influence of follicle size on responses to GDF9.  Biol Reprod. 2008;  78(2) 243-253
  • 89 Wu X, Chen L, Brown C A, Yan C, Matzuk M M. Interrelationship of growth differentiation factor 9 and inhibin in early folliculogenesis and ovarian tumorigenesis in mice.  Mol Endocrinol. 2004;  18(6) 1509-1519
  • 90 Wang J, Roy S K. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: modulation by follicle-stimulating hormone.  Biol Reprod. 2004;  70(3) 577-585
  • 91 Wang C, Roy S K. Expression of growth differentiation factor 9 in the oocytes is essential for the development of primordial follicles in the hamster ovary.  Endocrinology. 2006;  147(4) 1725-1734
  • 92 Dube J L, Wang P, Elvin J et al.. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes.  Mol Endocrinol. 1998;  12(12) 1809-1817
  • 93 Yan C, Wang P, DeMayo J et al.. Synergistic roles of bone morphogenetic protein 15 and growth differentiation factor 9 in ovarian function.  Mol Endocrinol. 2001;  15(6) 854-866
  • 94 Galloway S M, McNatty K P, Cambridge L M et al.. Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner.  Nat Genet. 2000;  25(3) 279-283
  • 95 Otsuka F, Yao Z, Lee T et al.. Bone morphogenetic protein-15. Identification of target cells and biological functions.  J Biol Chem. 2000;  275(50) 39523-39528
  • 96 McNatty K P, Juengel J L, Reader K L et al.. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants.  Reproduction. 2005;  129(4) 481-487
  • 97 Dole G, Nilsson E, Skinner M K. Glial-derived neurotrophic factor promotes ovarian primordial follicle development and cell-cell interactions during folliculogenesis.  Reproduction. 2008;  135(5) 671-682
  • 98 Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-beta: implications for carcinogenesis.  Oncogene. 2005;  24(37) 5742-5750
  • 99 Wiater E, Vale W. Inhibin is an antagonist of bone morphogenetic protein signaling.  J Biol Chem. 2003;  278(10) 7934-7941

Kelly MayoPh.D. 

Department of Biochemistry, Molecular Biology & Cell Biology, Northwestern University

Hogan 4-112, 2205 Tech Drive, Evanston, IL 60208

Email: k-mayo@northwestern.edu

    >