Skip to main content
Log in

Characterisation of photo-oxidation products within photoyellowed wool proteins: tryptophan and tyrosine derived chromophores

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Understanding the photodegradation of complex protein systems represents a significant goal in protein science. The photo-oxidation and resultant photoyellowing of wool in sunlight is a severe impediment to its marketability. However, although some photomodifications have been found in irradiated model amino acid systems, direct identification of the chromophoric photoproducts responsible for photoyellowing in irradiated wool itself has proved elusive. We here describe the direct characterisation and location of yellow chromophores and related photomodifications within the proteins of photoyellowed wool fabric, utilising a quasi-proteomic approach. In total, eight distinct photoproducts were characterised. Of these, five were derived from tryptophan; namely hydroxytryptophan, N-formylkynurenine, kynurenine, residues consistent with the dehydration of kynurenine, and hydroxykynurenine, while three were derived from tyrosine; namely dihydroxyphenylalanine, dityrosine, and a cross-linked residue consistent with a hydroxylated dityrosine residue. Fourteen modified peptide sequences were identified and the positions of modification for thirteen of these were located within the primary structure of known wool proteins. The nature of the photoproducts characterised offer valuable insight into the reaction pathways followed in the UV-induced photoyellowing of wool proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. B. Ruetsch, B. Yang, and Y. K. Yamath, Chemical and photo-oxidative hair damage studied by dye diffusion and electrophoresis, Cosmet. Sci., 2003, 54, 379–394.

    CAS  Google Scholar 

  2. G. T. Wondrak, M. J. Roberts, M. K. Jacobson, and E. L. Jacobson, 3-hydroxypyridine chromophores are endogenous sensitizers of photooxidative stress in human skin cells, J. Biol. Chem., 2004, 279, 30009–30020.

    Article  CAS  PubMed  Google Scholar 

  3. O. M. Sidorkina, S. V. Kuznetsov, J. C. Blais, M. Bazin, J. Laval, and R. Santus, Ultraviolet-B-induced damage to Escherichia coli Fpg protein, Photochem. Photobiol., 1999, 69, 658–663.

    Article  CAS  PubMed  Google Scholar 

  4. I. Dalle-Donne, A. Scaloni, D. Giustarini, E. Cavarra, G. Tell, G. Lungarella, R. Colombo, R. Rossi, and A. Milzani, Proteins as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomics, Mass Spectrom. Rev., 2005, 24, 55–99.

    Article  CAS  PubMed  Google Scholar 

  5. G. B. Reddy, and K. S. Bhat, Protection against UVB inactivation (in vitro) of rat lens enzymes by natural antioxidants, Mol. Cell. Biochem., 1999, 194, 41–45.

    Article  CAS  PubMed  Google Scholar 

  6. K. Kubiak, M. Kowalska, and W. Nowak, Molecular dynamics study of early events during photooxidation of eye lens protein gamma-beta crystallin, J. Mol. Struct. (THEOCHEM), 2003, 630, 315–325.

    Article  CAS  Google Scholar 

  7. N. Fujii, H. Uchida, and T. Saito, The damaging effect of UV-C irradiation on lens alpha-crystallin, Mol. Vis., 2004, 10, 814–820.

    PubMed  Google Scholar 

  8. A. E. Stapleton, Ultraviolet radiation and plants: Burning questions, Plant Cell, 1992, 4, 1353–1358.

    Article  PubMed  PubMed Central  Google Scholar 

  9. C. R. Caldwell, Ultraviolet-induced photodegradation of cucumber (Cucumis sativus L.) microsomal and soluble protein tryptophanyl residues in vitro, Plant Physiol., 1993, 101, 947–953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. E. Gerhardt, M. I. Wilson, and B. M. Greenberg, Tryptophan photolysis leads to a UVB-induced 66 kD photoproduct of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in vitro and in vivo, Photochem. Photobiol., 1999, 70, 49–56.

    CAS  Google Scholar 

  11. J. E. Frederick, and D. Lubin, Possible long-term changes in biologically active ultraviolet radiation reaching the ground, Photochem. Photobiol., 1988, 47, 571–578.

    Article  CAS  PubMed  Google Scholar 

  12. P. Duffield, and D. M. Lewis, The yellowing and bleaching of wool, Rev. Prog. Coloration, 1985, 15, 38–51.

    Article  CAS  Google Scholar 

  13. D. Graham, and K. Statham, The photochemical oxidation of wool in the presence of fluorescent compounds, J. Soc. Dyers Colour, 1956, 72, 434–438.

    Article  CAS  Google Scholar 

  14. L. A. Holt, and B. Milligan, The formation of carbonyl groups during irradiation of wool and its relevance to photoyellowing, Text. Res. J., 1977, 47, 620–624.

    Article  CAS  Google Scholar 

  15. B. Milligan, Sunlight yellowing of white wool: A complex problem, in Proc. 6th Int. Wool Text. Res. Conf., South African Wool and Textile Research Institute of the Council for Scientific and Industrial Research, Pretoria, South Africa, 1980, pp. 167–181.

    Google Scholar 

  16. J. A. Maclaren and and B. Milligan, Wool science - The chemical reactivity of the wool fibre, Science Press, Marrickville, NSW, Australia, 1981.

    Google Scholar 

  17. K. Roper and and E. Finnimore, Chemical structure of chromophores formed during photoyellowing of wool, in Proc. 7th Int. Wool Text. Res. Conf., The Society of Fiber Science and Technology, Tokyo, Japan, 1985, pp. 21–30.

    Google Scholar 

  18. K. Schäfer, D. Goddinger, and H. Hocker, Photodegradation of tryptophan in wool, J. Soc. Dyers Colour., 1997, 133, 350–355.

    Google Scholar 

  19. R. S. Asquith, L. Hirst and and D. E. Rivett, Effects of ultraviolet radiation as related to the yellowing of wool, in Applied Polymer Symposium, 1971, pp. 333–335.

    Google Scholar 

  20. R. S. Asquith, and D. E. Rivett, Studies on the photooxidation of tryptophan, Biochim. Biophys. Acta, 1971, 252, 111–116.

    Article  CAS  PubMed  Google Scholar 

  21. M. B. Goshe, Y. H. Chen, and V. E. Anderson, Identification of the sites of hydroxyl radical reaction with peptides by hydrogen/deuterium exchange: Prevalence of reactions with the side chains, Biochemistry, 2000, 39, 1761–1770.

    Article  CAS  PubMed  Google Scholar 

  22. R. S. Asquith, and K. E. Brooke, Yellowing of wool keratin on exposure to ultraviolet radiation, J. Soc. Dyers Colour, 1968, 84, 159–165.

    Article  CAS  Google Scholar 

  23. R. S. Asquith, and D. E. Rivett, The photolysis of tyrosine and its possible relationship to the yellowing of wool, Text. Res. J., 1969, 39, 633–637.

    Article  CAS  Google Scholar 

  24. G. J. Smith, and W. H. Melhuish, Fluorescence and phosphorescence of wool keratin excited by UV-A radiation, Text. Res. J., 1985, 55, 304–307.

    Article  CAS  Google Scholar 

  25. K. Schäfer, The natural fluorescence of wool, J. Soc. Dyers Colour, 1991, 107, 206–211.

    Article  Google Scholar 

  26. W. S. Simpson, Origins of variation in the fluorescence patterns of wool and wool proteins, in Proc. 9th Int. Wool Text. Res. Conf., 1995, Citta degli Studi Biella and International Wool Secrariat, Biella, Italy, pp. 429–439.

    Google Scholar 

  27. K. Stewart, P. L. Spedding, M. S. Otterburn, and D. M. Lewis, Surface layer of wool. II. Dityrosine in wool, J. Appl. Polym. Sci., 1997, 66, 2365–2376.

    Article  CAS  Google Scholar 

  28. T. J. Simat, and H. Steinhart, Oxidation of free tryptophan and tryptophan residues in peptides and proteins, J. Agric. Food Chem., 1998, 46, 490–498.

    Article  CAS  PubMed  Google Scholar 

  29. A. S. Inglis, and F. G. Lennox, Studies in wool yellowing. Part IV: Changes in amino acid composition due to irradiation, Text. Res. J., 1963, 33, 431–434.

    Article  CAS  Google Scholar 

  30. C. Nicholls, and M. Pailthorpe, Primary reactions in the photoyellowing of wool keratin, J. Text. Inst., 1976, 67, 397–403.

    Article  CAS  Google Scholar 

  31. G. J. Smith, M. R. Thorpe, W. H. Melhuish, and G. S. Beddard, Fluorescence of tryptophan in keratin, Photochem. Photobiol., 1980, 32, 715–718.

    Article  CAS  Google Scholar 

  32. B. S. Berlett, and E. R. Stadtman, Protein oxidation in aging, disease, and oxidative stress, J. Biol. Chem., 1997, 272, 20313–20316.

    Article  CAS  PubMed  Google Scholar 

  33. T. Kotiaho, M. N. Eberlin, P. Vainiotalo, and R. Kostiainen, Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides, J. Am. Soc. Mass Spectrom., 2000, 11, 526–535.

    Article  CAS  PubMed  Google Scholar 

  34. M. R. Domingues, P. Domingues, A. Reis, C. Fonseca, F. M. Amado, A. J. Ferrer-Correia, Identification of oxidation products and free radicals of tryptophan by mass spectrometry, J. Am. Soc. Mass Spectrom., 2003, 14, 406–416.

    Article  CAS  PubMed  Google Scholar 

  35. P. Roepstorff, and J. Fohlman, Proposal for a common nomenclature for sequence ions in mass spectra of peptides, Biomed. Mass Spectrom., 1984, 11, 601.

    Article  CAS  PubMed  Google Scholar 

  36. R. Johnson, S. Martin, K. Biemann, J. Stults, and J. T. Watson, Novel fragmentation process of peptides by collision-induced decomposition in a tandem mass spectrometer: Differentiation of leucine and isoleucine, Anal. Chem., 1987, 59, 2621–2625.

    Article  CAS  PubMed  Google Scholar 

  37. K. Biemann, Contributions of mass spectrometry to peptide and protein structure, Biomed. Environ. Mass Spectrom., 1988, 16, 99–111.

    Article  CAS  PubMed  Google Scholar 

  38. J. Maskos, J. D. Rush, and W. H. Koppenol, The hydroxylation of tryptophan, Arch. Biochem. Biophys., 1992, 296, 514–520.

    Article  CAS  PubMed  Google Scholar 

  39. K. R. Millington, and G. Maurdev, The generation of superoxide and hydrogen peroxide by exposure of fluorescent whitening agents to UVA radiation and its relevance to the rapid photoyellowing of whitened wool, J. Photochem. Photobiol., A, 2004, 165, 177–185.

    Article  CAS  Google Scholar 

  40. K. R. Millington, and L. J. Kirschenbaum, Detection of hydroxyl radicals in photoirradiated wool, cotton, nylon and polyester fabrics using a fluorescent probe, Color. Tech., 2002, 118, 6–14.

    Article  CAS  Google Scholar 

  41. L. Lee, N. Koo, and D. B. Min, Reactive oxygen species, aging, and antioxidative nutraceuticals, Compr. Rev. Food Sci. Food Safety, 2004, 3, 21–33.

    Article  CAS  Google Scholar 

  42. M. van de Weert, F. M. Lagerwerf, J. Haverkamp, and W. Heerma, Mass spectrometric analysis of oxidized tryptophan, J. Mass Spectrom., 1998, 33, 884–891.

    Article  Google Scholar 

  43. R. T. Dean, S. Fu, R. Stocker, and M. J. Davies, Biochemistry and pathology of radical-mediated protein oxidation, Biochem. J., 1997, 324, 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. A. Meister, Biochemistry of the amino acids, Volume II, Academic Press, New York, 2nd edn, 1965.

    Google Scholar 

  45. D. A. Bender, Chemistry and biochemistry of the amino acids, 1985, Chapman & Hall, London.

    Google Scholar 

  46. M. P. Heyes, C. Y. Chen, E. O. Major, and K. Saito, Different kynurenine pathway enzymes limit quinolinic acid formation by various human cell types, Biochem. J., 1997, 326 Pt 2, 351–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. B. Garner, D. C. Shaw, R. A. Lindner, J. A. Carver, and R. J. Truscott, Non-oxidative modification of lens crystallins by kynurenine: a novel post-translational protein modification with possible relevance to ageing and cataract, Biochim. Biophys. Acta, 2000, 1476, 265–278.

    Article  CAS  PubMed  Google Scholar 

  48. S. Vazquez, J. A. Aquilina, J. F. Jamie, M. M. Sheil, and R. J. Truscott, Novel protein modification by kynurenine in human lenses, J. Biol. Chem., 2002, 277, 4867–4873.

    Article  CAS  PubMed  Google Scholar 

  49. J. M. Dyer, S. D. Bringans, and W. G. Bryson, Determination of photo-oxidation products within photoyellowed bleached wool proteins, Photochem. Photobiol., 2006, 82, 551–7.

    Article  CAS  PubMed  Google Scholar 

  50. S. D. Bringans, J. M. Dyer, J. E. Plowman, and W. G. Bryson, Kynurenine located within keratin proteins isolated from photoyellowed wool fabric, Text. Res. J., 2006, 76, 288–294.

    Article  CAS  Google Scholar 

  51. G. L. Juskowiak, S. J. Stachel, P. Tivitmahaisoon, D. L. Van Vranken, Fluorogenic peptide sequences - Transformation of short peptides into fluorophores under ambient photo-oxidative conditions, J. Am. Chem. Soc., 2004, 126, 550–556.

    Article  CAS  PubMed  Google Scholar 

  52. R. Gemmell, and R. Chapman, Formation and breakdown of the inner root sheath and features of the pilary canal epithelium in the wool follicle, J. Ultrastruct. Res., 1971, 36, 355–366.

    Article  CAS  PubMed  Google Scholar 

  53. D. Orwin, and J. L. Woods, Cellular debris in the grease of wool fibres, Text. Res. J., 1985, 55, 84–92.

    Article  CAS  Google Scholar 

  54. P. B. Koch, Production of 14C-labeled 3-hydroxy-L-kynurenine in a butterfly, Heliconius charitonia L. (Heliconidae), and precursor studies in butterfly wing ommatins, Pigm. Cell Res., 1993, 6, 85–90.

    Article  CAS  Google Scholar 

  55. H. F. Nijhout, Ommochrome pigmentation of the linea and rosa seasonal forms of Precis coenia (Lepidoptera: Nymphalidae), Arch. Insect Biochem. Physiol., 1997, 36, 215–222.

    Article  CAS  Google Scholar 

  56. K. M. Summers, and A. J. Howells, Xanthomatin biosynthesis in wild-type and mutant strains of Australian sheep blowfly Lucilia cuprina, Biochem. Genet., 1978, 16, 1153–1163.

    Article  CAS  PubMed  Google Scholar 

  57. L. M. Bova, M. J. H. Sweeney, J. F. Jamie, R. J. W. Truscott, Major changes in human ocular UV protection with age, Invest. Ophthalmol. Visual Sci., 2001, 42, 200–205.

    CAS  Google Scholar 

  58. G. M. Stutchbury, and R. J. Truscott, The modification of proteins by 3-hydroxykynurenine, Exp. Eye Res., 1993, 2, 149–155.

    Article  Google Scholar 

  59. B. D. Hood, B. Garner, and R. J. Truscott, Human lens coloration and aging. Evidence for crystallin modification by the major ultraviolet filter, 3-hydroxy-kynurenine O-beta-D-glucoside, J. Biol. Chem., 1999, 274, 32547–32550.

    Article  CAS  PubMed  Google Scholar 

  60. D. Godinger, K. Schäfer, and H. Hocker, Phenylalanine and tyrosine - two aromatic amino acids involved in the photoyellowing of wool, Wool Tech. Sheep Breed., 1994, 42, 83–89.

    Google Scholar 

  61. H. Zegota, K. Kolodziejczyk, M. Krol, and B. Krol, o-Tyrosine hydroxylation by OH radicals. 2,3,-DOPA and 2,5-DOPA formation in gamma-irradiated aqueous solution, Radiat. Phys. Chem., 2005, 72, 25–33.

    Article  CAS  Google Scholar 

  62. S. Collins, R. S. Davidson, P. H. Greaves, M. Healey, and D. M. Lewis, The natural fluorescence of wool, J. Soc. Dyers Colour, 1988, 104, 348–352.

    Article  CAS  Google Scholar 

  63. L. A. Marquez, and H. B. Dunford, Kinetics of oxidation of tyrosine and dityrosine by myeloperoxidase compounds I and II. Implications, for lipoprotein peroxidation studies, J. Biol. Chem., 1995, 270, 30434–30440.

    Article  CAS  PubMed  Google Scholar 

  64. S. S. Lehrer, and G. D. Fasman, Ultraviolet irradiation effects in poly-l-tyrosine and model compounds. Identification of bityrosine as a photoproduct, Biochemistry, 1967, 6, 757–767.

    Article  CAS  PubMed  Google Scholar 

  65. P. M. Steinert, Structure, function, and dynamics of keratin intermediate filaments, J. Invest. Dermatol., 1993, 100, 729–734.

    Article  CAS  PubMed  Google Scholar 

  66. S. V. Strelkov, H. Herrmann, N. Geisler, R. Zimbelmann, P. Burkhard, and and U. Aebi, Toward the atomic details of intermediate filament structure, assembly and dynamics, in Proc. 10th Int. Wool Text. Res. Conf., Deutsches Wollforschungsinstitut an der RWTH Aachen e.V, Aachen, Germany, 2000, pp. KNL-4 1–11.

    Google Scholar 

  67. M. Horio, and T. Kondo, Crimping of wool fibres, Text. Res. J., 1953, 23, 373–387.

    Article  CAS  Google Scholar 

  68. Swiss-Prot database, access viahttp://us.expasy.org/sprot/

  69. B. C. Powell and and G. E. Rogers, The role of keratin proteins and their genes in the growth, structure and properties of hair, in Formation and structure of human hair, ed. P. Jolláes, H. Zahn and H. Hèocker, Birkhäuser Verlag, Basel, Switzerland, 1st edn, 1997, pp. 59–148.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Dyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dyer, J.M., Bringans, S.D. & Bryson, W.G. Characterisation of photo-oxidation products within photoyellowed wool proteins: tryptophan and tyrosine derived chromophores. Photochem Photobiol Sci 5, 698–706 (2006). https://doi.org/10.1039/b603030k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b603030k

Navigation