Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice

Abstract

Tumor microenvironment in carcinomas recruits mesenchymal cells with an abnormal proangiogenic and invasive phenotype. It is not clear whether mesenchymal tumor cells (MTCs) derive from the activation of mature fibroblasts or from their stem cell precursors. However, stromal cell activation in tumors resembles in several aspects the mesenchymal rearrangement which normally occurs during reparative processes such as wound healing. Mesenchymal stem cells (MSCs) play a crucial role in developmental and reparative processes and have extraordinary proangiogenic potential, on the basis of which they are thought to show great promise for the treatment of ischemic disorders. Here, we show that MTCs have proangiogenic potential and that they share the transcriptional expression of the best-known proangiogenic factors with MSCs. We also found that MTCs and MSCs have the same molecular signature for stemness-related genes, and that when co-implanted with cancer cells in syngeneic animals MSCs determine early tumor appearance, probably by favoring the angiogenic switch. Our data (1) reveal crucial aspects of the proangiogenic phenotype of MTCs, (2) strongly suggest their stem origin and (3) signal the risk of therapeutic use of MSCs in tumor-promoting conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Al Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Sayed AD, El Weshi AN, Tulbah AM, Rahal MM, Ezzat AA . (2006). Metaplastic carcinoma of the breast clinical presentation, treatment results and prognostic factors. Acta Oncol 45: 188–195.

    Article  PubMed  Google Scholar 

  • Bhowmick NA, Neilson EG, Moses HL . (2004). Stromal fibroblasts in cancer initiation and progression. Nature 432: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnet D, Dick JE . (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  • Burns JS, Abdallah BM, Guldberg P, Rygaard J, Schroder HD, Kassem M . (2005). Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res 65: 3126–3135.

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC . (2005). Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun 332: 370–379.

    Article  CAS  PubMed  Google Scholar 

  • De Wever O, Mareel M . (2003). Role of tissue stroma in cancer cell invasion. J Pathol 200: 429–447.

    Article  CAS  PubMed  Google Scholar 

  • Dingli D, Michor F . (2006). Successful therapy must eradicate cancer stem cells. Stem Cells 24: 2603–2610.

    Article  CAS  PubMed  Google Scholar 

  • Direkze NC, Hodivala-Dilke K, Jeffery R, Hunt T, Poulsom R, Oukrif D et al. (2004). Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64: 8492–8495.

    Article  CAS  PubMed  Google Scholar 

  • Dvorak HF . (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–1659.

    CAS  PubMed  Google Scholar 

  • Feinberg AP . (2007). Phenotypic plasticity and the epigenetics of human disease. Nature 447: 433–440.

    Article  CAS  PubMed  Google Scholar 

  • Fiegl H, Millinger S, Goebel G, Muller-Holzner E, Marth C, Laird PW et al. (2006). Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66: 29–33.

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Watson K, Ingber D, Hanahan D . (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339: 58–61.

    Article  CAS  PubMed  Google Scholar 

  • Galie M, D’Onofrio M, Montani M, Amici A, Calderan L, Marzola P et al. (2005a). Tumor vessel compression hinders perfusion of ultrasonographic contrast agents. Neoplasia 7: 528–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galie M, Sorrentino C, Montani M, Micossi L, Di Carlo E, D’Antuono T et al. (2005b). Mammary carcinoma provides highly tumourigenic and invasive reactive stromal cells. Carcinogenesis 26: 1868–1878.

    Article  CAS  PubMed  Google Scholar 

  • Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S et al. (2004). Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64: 7011–7021.

    Article  CAS  PubMed  Google Scholar 

  • Hayward SW, Wang Y, Cao M, Hom YK, Zhang B, Grossfeld GD et al. (2001). Malignant transformation in a nontumorigenic human prostatic epithelial cell line. Cancer Res 61: 8135–8142.

    CAS  PubMed  Google Scholar 

  • Hill R, Song Y, Cardiff RD, Van Dyke T . (2005). Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  • Holmgren L, O’Reilly MS, Folkman J . (1995). Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1: 149–153.

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Yao J, Cai L, Bachman KE, van den BF, Velculescu V et al. (2005). Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37: 899–905.

    Article  CAS  PubMed  Google Scholar 

  • Hung SC, Deng WP, Yang WK, Liu RS, Lee CC, Su TC et al (2005). Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11: 7749–7756.

    Article  CAS  PubMed  Google Scholar 

  • Keith WN . (2004). From stem cells to cancer: balancing immortality and neoplasia. Oncogene 23: 5092–5094.

    Article  CAS  PubMed  Google Scholar 

  • Knutson KL, Lu H, Stone B, Reiman JM, Behrens MD, Prosperi CM et al. (2006). Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 177: 1526–1533.

    Article  CAS  PubMed  Google Scholar 

  • Krampera M, Marconi S, Pasini A, Galie M, Rigotti G, Mosna F et al. (2007). Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 40: 382–390.

    Article  CAS  PubMed  Google Scholar 

  • Kurose K, Gilley K, Matsumoto S, Watson PH, Zhou XP, Eng C . (2002). Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32: 355–357.

    Article  CAS  PubMed  Google Scholar 

  • Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  • Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al. (2007). Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037.

    Article  CAS  PubMed  Google Scholar 

  • McAlhany SJ, Ressler SJ, Larsen M, Tuxhorn JA, Yang F, Dang TD et al. (2003). Promotion of angiogenesis by ps20 in the differential reactive stroma prostate cancer xenograft model. Cancer Res 63: 5859–5865.

    CAS  PubMed  Google Scholar 

  • Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A . (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110: 349–355.

    Article  CAS  PubMed  Google Scholar 

  • Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ et al. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8: 197–209.

    Article  CAS  PubMed  Google Scholar 

  • Naumov GN, Akslen LA, Folkman J . (2006). Role of angiogenesis in human tumor dormancy: animal models of the angiogenic switch. Cell Cycle 5: 1779–1787.

    Article  CAS  PubMed  Google Scholar 

  • Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348.

    Article  CAS  PubMed  Google Scholar 

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM . (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3: 347–361.

    Article  PubMed  Google Scholar 

  • Petersen OW, Lind NH, Gudjonsson T, Villadsen R, Ronnov-Jessen L, Bissell MJ . (2001). The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res 3: 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109: 656–663.

    Article  PubMed  Google Scholar 

  • Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D et al. (2005). Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65: 5506–5511.

    Article  CAS  PubMed  Google Scholar 

  • Reya T, Morrison SJ, Clarke MF, Weissman IL . (2001). Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  • Rigotti G, Marchi A, Galie M, Baroni G, Benati D, Krampera M et al. (2007). Clinical treatment of radiotherapy tissue damages by lipoaspirates transplant: a healing process mediated by adipose-derived adult stem cells (ASCs). Plast Reconstr Surg 119: 1409–1422.

    Article  CAS  PubMed  Google Scholar 

  • Ronnov-Jessen L, Petersen OW, Bissell MJ . (1996). Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 76: 69–125.

    Article  CAS  PubMed  Google Scholar 

  • Rubio D, Garcia-Castro J, Martin MC, de la FR, Cigudosa JC, Lloyd AC et al. (2005). Spontaneous human adult stem cell transformation. Cancer Res 65: 3035–3039.

    Article  CAS  PubMed  Google Scholar 

  • Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell 11: 259–273.

    Article  CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP . (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.

    Article  CAS  PubMed  Google Scholar 

  • Wolf D, Rumpold H, Koeck R, Gunsilius E . (2005). Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 97: 540–541.

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Tuxhorn JA, Ressler SJ, McAlhany SJ, Dang TD, Rowley DR . (2005). Stromal expression of connective tissue growth factor promotes angiogenesis and prostate cancer tumorigenesis. Cancer Res 65: 8887–8895.

    Article  CAS  PubMed  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al. (2002). Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13: 4279–4295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Fondazione Cassa di Risparmio di Verona, Vicenza e Belluno and the Ministero dell’Università e della Ricerca Scientifica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Galiè.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galiè, M., Konstantinidou, G., Peroni, D. et al. Mesenchymal stem cells share molecular signature with mesenchymal tumor cells and favor early tumor growth in syngeneic mice. Oncogene 27, 2542–2551 (2008). https://doi.org/10.1038/sj.onc.1210920

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210920

Keywords

This article is cited by

Search

Quick links