Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mechanisms of transcription factor deregulation in lymphoid cell transformation

Abstract

The most frequent targets of genetic alterations in human lymphoid leukemias are transcription factor genes with essential functions in blood cell development. TAL1, LYL1, HOX11 and other transcription factors essential for normal hematopoiesis are often misexpressed in the thymus in T-cell acute lymphoblastic leukemia (T-ALL), leading to differentiation arrest and cell transformation. Recent advances in the ability to assess DNA copy number have led to the discovery that the MYB transcription factor oncogene is tandemly duplicated in T-ALL. The NOTCH1 gene, which is essential for key embryonic cell-fate decisions in multicellular organisms, was found to be activated by mutation in a large percentage of T-ALL patients. The gene encoding the FBW7 protein ubiquitin ligase, which regulates the turnover of the intracellular form of NOTCH (ICN), is also mutated in T-ALL, resulting in stabilization of the ICN and activation of the NOTCH signaling pathway. In mature B-lineage ALL and Burkitt lymphoma, the MYC transcription factor oncogene is overexpressed due to translocation into the IG locus. PAX5, a transcription factor essential for B-lineage commitment, is inactivated in 32% of cases of B-progenitor ALL. Translocations resulting in oncogenic fusion transcription factors also occur frequently in this form of ALL. The most frequent transcription factor chimeric fusion, TEL-AML1, is an initiating event in B-progenitor ALL that acts by repressing transcription. Therefore, deregulated transcription and its consequent effects on key developmental pathways play a major role in the molecular pathogenesis of lymphoid malignancy. Once the full complement of cooperating mutations in transformed B- and T-progenitor cells is known, and the deregulated downstream pathways have been elucidated, it will be possible to identify vulnerable components and to target them with small-molecule inhibitors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams JM, Gerondakis S, Webb E, Corcoran LM, Cory S . (1983). Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytomas and is rearranged similarly in human Burkitt lymphomas. Proc Natl Acad Sci USA 80: 1982–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreasson P, Schwaller J, Anastasiadou E, Aster J, Gilliland DG . (2001). The expression of ETV6/CBFA2 (TEL/AML1) is not sufficient for the transformation of hematopoietic cell lines in vitro or the induction of hematologic disease in vivo. Cancer Genet Cytogenet 130: 93–104.

    CAS  PubMed  Google Scholar 

  • Aplan PD, Lombardi DP, Kirsch IR . (1991). Structural characterization of SIL, a gene frequently disrupted in T-cell acute lymphoblastic leukemia. Mol Cell Biol 11: 5462–5469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aplan PD, Lombardi DP, Reaman GH, Sather HN, Hammond GD, Kirsch IR . (1992). Involvement of the putative hematopoietic transcription factor SCL in T-cell acute lymphoblastic leukemia. Blood 79: 1327–1333.

    CAS  PubMed  Google Scholar 

  • Armstrong SA, Look AT . (2005). Molecular genetics of acute lymphoblastic leukemia. J Clin Oncol 23: 6306–6315.

    CAS  PubMed  Google Scholar 

  • Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. (2002). MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Arnold A, Cossman J, Bakhshi A, Jaffe ES, Waldmann TA, Korsmeyer SJ . (1983). Immunoglobulin-gene rearrangements as unique clonal markers in human lymphoid neoplasms. N Engl J Med 309: 1593–1599.

    CAS  PubMed  Google Scholar 

  • Ayer DE, Kretzner L, Eisenman RN . (1993). Mad: a heterodimeric partner for Max that antagonizes Myc transcriptional activity. Cell 72: 211–222.

    CAS  PubMed  Google Scholar 

  • Ayton PM, Cleary ML . (2003). Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 17: 2298–2307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Badiani PA, Kioussis D, Swirsky DM, Lampert IA, Weston K . (1996). T-cell lymphomas in v-Myb transgenic mice. Oncogene 13: 2205–2212.

    CAS  PubMed  Google Scholar 

  • Baer R . (1993). TAL1, TAL2 and LYL1: a family of basic helix–loop–helix proteins implicated in T cell acute leukaemia. Semin Cancer Biol 4: 341–347.

    CAS  PubMed  Google Scholar 

  • Bain G, Engel I, Robanus Maandag EC, te Riele HP, Voland JR, Sharp LL et al. (1997). E2A deficiency leads to abnormalities in alphabeta T-cell development and to rapid development of T-cell lymphomas. Mol Cell Biol 17: 4782–4791.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ballerini P, Blaise A, Busson-Le Coniat M, Su XY, Zucman-Rossi J, Adam M et al. (2002). HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 100: 991–997.

    Article  CAS  PubMed  Google Scholar 

  • Bash RO, Hall S, Timmons CF, Crist WM, Amylon M, Smith RG et al. (1995). Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. Blood 86: 666–676.

    CAS  PubMed  Google Scholar 

  • Begley CG, Aplan PD, Denning SM, Haynes BF, Waldmann TA, Kirsch IR . (1989). The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. Proc Natl Acad Sci USA 86: 10128–10132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berger R, Dastugue N, Busson M, Van Den Akker J, Perot C, Ballerini P et al. (2003). t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Francais de Cytogenetique Hematologique (GFCH). Leukemia 17: 1851–1857.

    CAS  PubMed  Google Scholar 

  • Bernard O, Lecointe N, Jonveaux P, Souyri M, Mauchauffe M, Berger R et al. (1991). Two site-specific deletions and t(1;14) translocation restricted to human T-cell acute leukemias disrupt the 5′ part of the tal-1 gene. Oncogene 6: 1477–1488.

    CAS  PubMed  Google Scholar 

  • Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. (2001). A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15: 1495–1504.

    CAS  PubMed  Google Scholar 

  • Boehm T, Foroni L, Kaneko Y, Perutz MF, Rabbitts TH . (1991). The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci USA 88: 4367–4371.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bousquet M, Broccardo C, Quelen C, Meggetto F, Kuhlein E, Delsol G et al. (2007). A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on wild-type PAX5. Blood 109: 3417–3423.

    CAS  PubMed  Google Scholar 

  • Breit TM, Mol EJ, Wolvers-Tettero IL, Ludwig WD, van Wering ER, van Dongen JJ . (1993). Site-specific deletions involving the tal-1 and sil genes are restricted to cells of the T cell receptor alpha/beta lineage: T cell receptor delta gene deletion mechanism affects multiple genes. J Exp Med 177: 965–977.

    CAS  PubMed  Google Scholar 

  • Brown L, Cheng JT, Chen Q, Siciliano MJ, Crist W, Buchanan G et al. (1990). Site-specific recombination of the tal-1 gene is a common occurrence in human T cell leukemia. EMBO J 9: 3343–3351.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cave H, Cacheux V, Raynaud S, Brunie G, Bakkus M, Cochaux P et al. (1997). ETV6 is the target of chromosome 12p deletions in t(12;21) childhood acute lymphocytic leukemia. Leukemia 11: 1459–1464.

    CAS  PubMed  Google Scholar 

  • Chan SM, Weng AP, Tibshirani R, Aster JC, Utz PJ . (2007). Notch signals positively regulate activity of the mTOR pathway in T cell acute lymphoblastic leukemia. Blood 110: 278–286.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CP, de Vivo I, Cleary ML . (1997). The Hox cooperativity motif of the chimeric oncoprotein E2a-Pbx1 is necessary and sufficient for oncogenesis. Mol Cell Biol 17: 81–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CP, Shen WF, Rozenfeld S, Lawrence HJ, Largman C, Cleary ML . (1995). Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev 9: 663–674.

    CAS  PubMed  Google Scholar 

  • Chen Q, Cheng JT, Tasi LH, Schneider N, Buchanan G, Carroll A et al. (1990). The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix–loop–helix protein. EMBO J 9: 415–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clappier E, Cuccuini W, Kalota A, Crinquette A, Cayuela JM, Dik WA et al. (2007). The C-MYB locus is involved in chromosomal translocation and genomic duplications in human T-cell acute leukemia (T-ALL)—the translocation defining a new T-ALL subtype in very young children. Blood 110: 1251–1261.

    CAS  PubMed  Google Scholar 

  • Cleary ML . (1991). Oncogenic conversion of transcription factors by chromosomal translocations. Cell 66: 619–622.

    CAS  PubMed  Google Scholar 

  • Cobaleda C, Schebesta A, Delogu A, Busslinger M . (2007). Pax5: the guardian of B cell identity and function. Nat Immunol 8: 463–470.

    CAS  PubMed  Google Scholar 

  • Corral J, Lavenir I, Impey H, Warren AJ, Forster A, Larson TA ; et al. (1996). An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell 85: 853–861.

    CAS  PubMed  Google Scholar 

  • Croce CM, Thierfelder W, Erikson J, Nishikura K, Finan J, Lenoir GM et al. (1983). Transcriptional activation of an unrearranged and untranslocated c-myc oncogene by translocation of a C lambda locus in Burkitt. Proc Natl Acad Sci USA 80: 6922–6926.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM . (1982). Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79: 7824–7827.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dear TN, Colledge WH, Carlton MB, Lavenir I, Larson T, Smith AJ et al. (1995). The Hox11 gene is essential for cell survival during spleen development. Development 121: 2909–2915.

    CAS  PubMed  Google Scholar 

  • Dear TN, Sanchez-Garcia I, Rabbitts TH . (1993). The HOX11 gene encodes a DNA-binding nuclear transcription factor belonging to a distinct family of homeobox genes. Proc Natl Acad Sci USA 90: 4431–4435.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dedera DA, Waller EK, LeBrun DP, Sen-Majumdar A, Stevens ME, Barsh GS et al. (1993). Chimeric homeobox gene E2A-PBX1 induces proliferation, apoptosis, and malignant lymphomas in transgenic mice. Cell 74: 833–843.

    CAS  PubMed  Google Scholar 

  • Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA . (1992). A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet 2: 113–118.

    CAS  PubMed  Google Scholar 

  • Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M et al. (2007). Non-transcriptional control of DNA replication by c-Myc. Nature 448: 445–451.

    CAS  PubMed  Google Scholar 

  • Drynan LF, Pannell R, Forster A, Chan NM, Cano F, Daser A et al. (2005). Mll fusions generated by Cre-loxP-mediated de novo translocations can induce lineage reassignment in tumorigenesis. EMBO J 24: 3136–3146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dube ID, Kamel-Reid S, Yuan CC, Lu M, Wu X, Corpus G et al. (1991). A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). Blood 78: 2996–3003.

    CAS  PubMed  Google Scholar 

  • Ellisen LW, Bird J, West DC, Soreng AL, Reynolds TC, Smith SD et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    CAS  PubMed  Google Scholar 

  • Emanuel BS, Selden JR, Chaganti RS, Jhanwar S, Nowell PC, Croce CM . (1984). The 2p breakpoint of a 2;8 translocation in Burkitt lymphoma interrupts the V kappa locus. Proc Natl Acad Sci USA 81: 2444–2446.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Erikson J, Nishikura K, ar-Rushdi A, Finan J, Emanuel B, Lenoir G et al. (1983). Translocation of an immunoglobulin kappa locus to a region 3′ of an unrearranged c-myc oncogene enhances c-myc transcription. Proc Natl Acad Sci USA 80: 7581–7585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenrick R, Amann JM, Lutterbach B, Wang L, Westendorf JJ, Downing JR et al. (1999). Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 19: 6566–6574.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez PC, Frank SR, Wang L, Schroeder M, Liu S, Greene J et al. (2003). Genomic targets of the human c-Myc protein. Genes Dev 17: 1115–1129.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrando AA, Armstrong SA, Neuberg DS, Sallan SE, Silverman LB, Korsmeyer SJ et al. (2003). Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. Blood 102: 262–268.

    CAS  PubMed  Google Scholar 

  • Ferrando AA, Herblot S, Palomero T, Hansen M, Hoang T, Fox EA et al. (2004). Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. Blood 103: 1909–1911.

    CAS  PubMed  Google Scholar 

  • Ferrando AA, Look AT . (2000). Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol 37: 381–395.

    CAS  PubMed  Google Scholar 

  • Ferrando AA, Look AT . (2003). Gene expression profiling in T-cell acute lymphoblastic leukemia. Semin Hematol 40: 274–280.

    CAS  PubMed  Google Scholar 

  • Finger LR, Harvey RC, Moore RC, Showe LC, Croce CM . (1986). A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 234: 982–985.

    CAS  PubMed  Google Scholar 

  • Fisch P, Boehm T, Lavenir I, Larson T, Arno J, Forster A et al. (1992). T-cell acute lymphoblastic lymphoma induced in transgenic mice by the RBTN1 and RBTN2 LIM-domain genes. Oncogene 7: 2389–2397.

    CAS  PubMed  Google Scholar 

  • Forster A, Pannell R, Drynan LF, McCormack M, Collins EC, Daser A et al. (2003). Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 3: 449–458.

    CAS  PubMed  Google Scholar 

  • Grabher C, von Boehmer H, Look AT . (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6: 347–359.

    CAS  PubMed  Google Scholar 

  • Grandori C, Mac J, Siebelt F, Ayer DE, Eisenman RN . (1996). Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J 15: 4344–4357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greaves MF, Wiemels J . (2003). Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3: 639–649.

    CAS  PubMed  Google Scholar 

  • Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G et al. (1992). The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 71: 701–708.

    CAS  PubMed  Google Scholar 

  • Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ . (1991). Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253: 79–82.

    CAS  PubMed  Google Scholar 

  • Hiebert SW, Sun W, Davis JN, Golub T, Shurtleff S, Buijs A et al. (1996). The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol 16: 1349–1355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollis GF, Mitchell KF, Battey J, Potter H, Taub R, Lenoir GM et al. (1984). A variant translocation places the lambda immunoglobulin genes 3′ to the c-myc oncogene in Burkitt's lymphoma. Nature 307: 752–755.

    CAS  PubMed  Google Scholar 

  • Hsu K, Look AT . (2003). Turning on a dimer: new insights into MLL chimeras. Cancer Cell 4: 81–83.

    CAS  PubMed  Google Scholar 

  • Hunger SP . (1996). Chromosomal translocations involving the E2A gene in acute lymphoblastic leukemia: clinical features and molecular pathogenesis. Blood 87: 1211–1224.

    CAS  PubMed  Google Scholar 

  • Hunger SP, Ohyashiki K, Toyama K, Cleary ML . (1992). Hlf, a novel hepatic bZIP protein, shows altered DNA-binding properties following fusion to E2A in t(17;19) acute lymphoblastic leukemia. Genes Dev 6: 1608–1620.

    CAS  PubMed  Google Scholar 

  • Inaba T, Inukai T, Yoshihara T, Seyschab H, Ashmun RA, Canman CE et al. (1996). Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature 382: 541–544.

    CAS  PubMed  Google Scholar 

  • Inaba T, Roberts WM, Shapiro LH, Jolly KW, Raimondi SC, Smith SD et al. (1992). Fusion of the leucine zipper gene HLF to the E2A gene in human acute B-lineage leukemia. Science 257: 531–534.

    CAS  PubMed  Google Scholar 

  • Inoue A, Seidel MG, Wu W, Kamizono S, Ferrando AA, Bronson RT et al. (2002). Slug, a highly conserved zinc finger transcriptional repressor, protects hematopoietic progenitor cells from radiation-induced apoptosis in vivo. Cancer Cell 2: 279–288.

    PubMed  Google Scholar 

  • Inukai T, Inoue A, Kurosawa H, Goi K, Shinjyo T, Ozawa K et al. (1999). SLUG, a ces-1-related zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of the E2A-HLF oncoprotein. Mol Cell 4: 343–352.

    CAS  PubMed  Google Scholar 

  • Jousset C, Carron C, Boureux A, Quang CT, Oury C, Dusanter-Fourt I et al. (1997). A domain of TEL conserved in a subset of ETS proteins defines a specific oligomerization interface essential to the mitogenic properties of the TEL-PDGFR beta oncoprotein. EMBOJ 16: 69–82.

    CAS  Google Scholar 

  • Kamps MP, Baltimore D . (1993). E2A-Pbx1, the t(1;19) translocation protein of human pre-B-cell acute lymphocytic leukemia, causes acute myeloid leukemia in mice. Mol Cell Biol 13: 351–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kamps MP, Murre C, Sun XH, Baltimore D . (1990). A new homeobox gene contributes the DNA binding domain of the t(1;19) translocation protein in pre-B ALL. Cell 60: 547–555.

    CAS  PubMed  Google Scholar 

  • Kees UR, Heerema NA, Kumar R, Watt PM, Baker DL, La MK et al. (2003). Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: a study from the Children's Cancer Group (CCG). Leukemia 17: 887–893.

    CAS  PubMed  Google Scholar 

  • Kennedy MA, Gonzalez-Sarmiento R, Kees UR, Lampert F, Dear N, Boehm T et al. (1991). HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 88: 8900–8904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klempnauer KH, Gonda TJ, Bishop JM . (1982). Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell 31: 453–463.

    CAS  PubMed  Google Scholar 

  • Knoepfler PS, Kamps MP . (1995). The pentapeptide motif of Hox proteins is required for cooperative DNA binding with Pbx1, physically contacts Pbx1, and enhances DNA binding by Pbx1. Mol Cell Biol 15: 5811–5819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lahortiga I, De Keersmaecker K, Van Vlierberghe P, Graux C, Cauwelier B, Lambert F et al. (2007). Duplication of the MYB oncogene in T cell acute lymphoblastic leukemia. Nat Genet 9: 593–595.

    Google Scholar 

  • Larson RC, Fisch P, Larson TA, Lavenir I, Langford T, King G et al. (1994). T cell tumours of disparate phenotype in mice transgenic for Rbtn-2. Oncogene 9: 3675–3681.

    CAS  PubMed  Google Scholar 

  • Larson RC, Lavenir I, Larson TA, Baer R, Warren AJ, Wadman I et al. (1996). Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J 15: 1021–1027.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Larson RC, Osada H, Larson TA, Lavenir I, Rabbitts TH . (1995). The oncogenic LIM protein Rbtn2 causes thymic developmental aberrations that precede malignancy in transgenic mice. Oncogene 11: 853–862.

    CAS  PubMed  Google Scholar 

  • Lavau C, Du C, Thirman M, Zeleznik-Le N . (2000a). Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J 19: 4655–4664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavau C, Luo RT, Du C, Thirman MJ . (2000b). Retrovirus-mediated gene transfer of MLL-ELL transforms primary myeloid progenitors and causes acute myeloid leukemias in mice. Proc Natl Acad Sci USA 97: 10984–10989.

    CAS  PubMed  PubMed Central  Google Scholar 

  • LeBrun DP, Cleary ML . (1994). Fusion with E2A alters the transcriptional properties of the homeodomain protein PBX1 in t(1;19) leukemias. Oncogene 9: 1641–1647.

    CAS  PubMed  Google Scholar 

  • Lewis HD, Leveridge M, Strack PR, Haldon CD, O'Neil J, Kim H et al. (2007). Apoptosis in T cell acute lymphoblastic leukemia cells after cell cycle arrest induced by pharmacological inhibition of notch signaling. Chem Biol 14: 209–219.

    CAS  PubMed  Google Scholar 

  • Li Z, Van Calcar S, Qu C, Cavenee WK, Zhang MQ, Ren B . (2003). A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci USA 100: 8164–8169.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YW, Nichols RA, Letterio JJ, Aplan PD . (2006). Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma. Blood 107: 2540–2543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Look AT . (1997). Oncogenic transcription factors in the human acute leukemias. Science 278: 1059–1064.

    CAS  PubMed  Google Scholar 

  • Lu M, Gong ZY, Shen WF, Ho AD . (1991). The tcl-3 proto-oncogene altered by chromosomal translocation in T-cell leukemia codes for a homeobox protein. EMBO J 10: 2905–2910.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Knoepfler PS, Scheele J, Wright DD, Kamps MP . (1995). Both Pbx1 and E2A-Pbx1 bind the DNA motif ATCAATCAA cooperatively with the products of multiple murine Hox genes, some of which are themselves oncogenes. Mol Cell Biol 15: 3786–3795.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Q, Wright DD, Kamps MP . (1994). Fusion with E2A converts the Pbx1 homeodomain protein into a constitutive transcriptional activator in human leukemias carrying the t(1;19) translocation. Mol Cell Biol 14: 3938–3948.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q, Alder H, Nelson KK, Chatterjee D, Gu Y, Nakamura T et al. (1993). Analysis of the murine All-1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases. Proc Natl Acad Sci USA 90: 6350–6354.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malecki MJ, Sanchez-Irizarry C, Mitchell JL, Histen G, Xu ML, Aster JC et al. (2006). Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol 26: 4642–4651.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malyukova A, Dohda T, von der Lehr N, Akhondi S, Corcoran M, Heyman M et al. (2007). The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 67: 5611–5616.

    CAS  PubMed  Google Scholar 

  • Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A et al. (2007). Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 447: 966–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauvieux L, Leymarie V, Helias C, Perrusson N, Falkenrodt A, Lioure B et al. (2002). High incidence of Hox11L2 expression in children with T-ALL. Leukemia 16: 2417–2422.

    CAS  PubMed  Google Scholar 

  • McGuire EA, Hockett RD, Pollock KM, Bartholdi MF, O'Brien SJ, Korsmeyer SJ . (1989). The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein. Mol Cell Biol 9: 2124–2132.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire EA, Rintoul CE, Sclar GM, Korsmeyer SJ . (1992). Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol Cell Biol 12: 4186–4196.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McKeithan TW, Shima EA, Le Beau MM, Minowada J, Rowley JD, Diaz MO . (1986). Molecular cloning of the breakpoint junction of a human chromosomal 8;14 translocation involving the T-cell receptor alpha-chain gene and sequences on the 3′ side of MYC. Proc Natl Acad Sci USA 83: 6636–6640.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McLean TW, Ringold S, Neuberg D, Stegmaier K, Tantravahi R, Ritz J et al. (1996). TEL/AML-1 dimerizes and is associated with a favorable outcome in childhood acute lymphoblastic leukemia. Blood 88: 4252–4258.

    CAS  PubMed  Google Scholar 

  • Mellentin JD, Nourse J, Hunger SP, Smith SD, Cleary ML . (1990). Molecular analysis of the t(1;19) breakpoint cluster region in pre-B cell acute lymphoblastic leukemias. Genes Chromosomes Cancer 2: 239–247.

    CAS  PubMed  Google Scholar 

  • Mellentin JD, Smith SD, Cleary ML . (1989). lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix–loop–helix DNA binding motif. Cell 58: 77–83.

    CAS  PubMed  Google Scholar 

  • Metzler M, Forster A, Pannell R, Arends MJ, Daser A, Lobato MN et al. (2006). A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 25: 3093–3103.

    CAS  PubMed  Google Scholar 

  • Metzstein MM, Hengartner MO, Tsung N, Ellis RE, Horvitz HR . (1996). Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature 382: 545–547.

    CAS  PubMed  Google Scholar 

  • Metzstein MM, Horvitz HR . (1999). The C. elegans cell death specification gene ces-1 encodes a snail family zinc finger protein. Mol Cell 4: 309–319.

    CAS  PubMed  Google Scholar 

  • Mikkola HK, Klintman J, Yang H, Hock H, Schlaeger TM, Fujiwara Y et al. (2003). Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421: 547–551.

    CAS  PubMed  Google Scholar 

  • Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. (2002). MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 10: 1107–1117.

    CAS  PubMed  Google Scholar 

  • Mitani K, Kanda Y, Ogawa S, Tanaka T, Inazawa J, Yazaki Y et al. (1995). Cloning of several species of MLL/MEN chimeric cDNAs in myeloid leukemia with t(11;19)(q23;p13.1) translocation. Blood 85: 2017–2024.

    CAS  PubMed  Google Scholar 

  • Monica K, LeBrun DP, Dedera DA, Brown R, Cleary ML . (1994). Transformation properties of the E2a-Pbx1 chimeric oncoprotein: fusion with E2a is essential, but the Pbx1 homeodomain is dispensable. Mol Cell Biol 14: 8304–8314.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow M, Horton S, Kioussis D, Brady HJ, Williams O . (2004). TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood 103: 3890–3896.

    CAS  PubMed  Google Scholar 

  • Morrow M, Samanta A, Kioussis D, Brady HJ, Williams O . (2007). TEL-AML1 preleukemic activity requires the DNA binding domain of AML1 and the dimerization and corepressor binding domains of TEL. Oncogene 26: 4404–4414.

    CAS  PubMed  Google Scholar 

  • Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA et al. (1991). A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65: 677–689.

    CAS  PubMed  Google Scholar 

  • Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446: 758–764.

    CAS  PubMed  Google Scholar 

  • Neale GA, Rehg JE, Goorha RM . (1995). Ectopic expression of rhombotin-2 causes selective expansion of CD4−CD8− lymphocytes in the thymus and T-cell tumors in transgenic mice. Blood 86: 3060–3071.

    CAS  PubMed  Google Scholar 

  • Nourse J, Mellentin JD, Galili N, Wilkinson J, Stanbridge E, Smith SD et al. (1990). Chromosomal translocation t(1;19) results in synthesis of a homeobox fusion mRNA that codes for a potential chimeric transcription factor. Cell 60: 535–545.

    CAS  PubMed  Google Scholar 

  • O'Neil J, Billa M, Oikemus S, Kelliher M . (2001). The DNA binding activity of TAL-1 is not required to induce leukemia/lymphoma in mice. Oncogene 20: 3897–3905.

    CAS  PubMed  Google Scholar 

  • O'Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. (2006). Activating Notch1 mutations in mouse models of T-ALL. Blood 107: 781–785.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C et al. (2007). FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204: 1813–1824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neil J, Shank J, Cusson N, Murre C, Kelliher M . (2004). TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. Cancer Cell 5: 587–596.

    CAS  PubMed  Google Scholar 

  • Orian A, van Steensel B, Delrow J, Bussemaker HJ, Li L, Sawado T et al. (2003). Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev 17: 1101–1114.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Owens BM, Hawley TS, Spain LM, Kerkel KA, Hawley RG . (2006). TLX1/HOX11-mediated disruption of primary thymocyte differentiation prior to the CD4+CD8+ double-positive stage. Br J Haematol 132: 216–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palomero T, Lim WK, Odom DT, Sulis ML, Real PJ, Margolin A et al. (2006). NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA 103: 18261–18266.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pear WS, Aster JC, Scott ML, Hasserjian RP, Soffer B, Sklar J et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J Exp Med 183: 2283–2291.

    CAS  PubMed  Google Scholar 

  • Pearson R, Weston K . (2000). c-Myb regulates the proliferation of immature thymocytes following beta-selection. EMBO J 19: 6112–6120.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porcher C, Swat W, Rockwell K, Fujiwara Y, Alt FW, Orkin SH . (1996). The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86: 47–57.

    CAS  PubMed  Google Scholar 

  • Rabbitts TH . (1994). Chromosomal translocations in human cancer. Nature 372: 143–149.

    CAS  PubMed  Google Scholar 

  • Radtke F, Wilson A, Mancini SJ, MacDonald HR . (2004). Notch regulation of lymphocyte development and function. Nat Immunol 5: 247–253.

    CAS  PubMed  Google Scholar 

  • Raju K, Tang S, Dube ID, Kamel-Reid S, Bryce DM, Breitman ML . (1993). Characterization and developmental expression of Tlx-1, the murine homolog of HOX11. Mech Dev 44: 51–64.

    CAS  PubMed  Google Scholar 

  • Rappold GA, Hameister H, Cremer T, Adolph S, Henglein B, Freese UK et al. (1984). c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocations. EMBO J 3: 2951–2955.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves R, Nissen MS . (1990). The A.T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem 265: 8573–8582.

    CAS  PubMed  Google Scholar 

  • Riz I, Hawley RG . (2005). G1/S transcriptional networks modulated by the HOX11/TLX1 oncogene of T-cell acute lymphoblastic leukemia. Oncogene 24: 5561–5575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robb L, Lyons I, Li R, Hartley L, Kontgen F, Harvey RP et al. (1995). Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc Natl Acad Sci USA 92: 7075–7079.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts CW, Shutter JR, Korsmeyer SJ . (1994). Hox11 controls the genesis of the spleen. Nature 368: 747–749.

    CAS  PubMed  Google Scholar 

  • Roberts CW, Sonder AM, Lumsden A, Korsmeyer SJ . (1995). Development expression of Hox11 and specification of splenic cell fate. Am J Pathol 146: 1089–1101.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rompaey LV, Potter M, Adams C, Grosveld G . (2000). Tel induces a G1 arrest and suppresses Ras-induced transformation. Oncogene 19: 5244–5250.

    CAS  PubMed  Google Scholar 

  • Royer-Pokora B, Loos U, Ludwig WD . (1991). TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). Oncogene 6: 1887–1893.

    CAS  PubMed  Google Scholar 

  • Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF, Hickstein DD . (2006). TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 103: 15166–15171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma VM, Calvo JA, Draheim KM, Cunningham LA, Hermance N, Beverly L et al. (2006). Notch1 contributes to mouse T-cell leukemia by directly inducing the expression of c-myc. Mol Cell Biol 26: 8022–8031.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shilatifard A, Lane WS, Jackson KW, Conaway RC, Conaway JW . (1996). An RNA polymerase II elongation factor encoded by the human ELL gene. Science 271: 1873–1876.

    CAS  PubMed  Google Scholar 

  • Shima EA, Le Beau MM, McKeithan TW, Minowada J, Showe LC, Mak TW et al. (1986). Gene encoding the alpha chain of the T-cell receptor is moved immediately downstream of c-myc in a chromosomal 8;14 translocation in a cell line from a human T-cell leukemia. Proc Natl Acad Sci USA 83: 3439–3443.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirasawa S, Arata A, Onimaru H, Roth KA, Brown GA, Horning S et al. (2000). Rnx deficiency results in congenital central hypoventilation. Nat Genet 24: 287–290.

    CAS  PubMed  Google Scholar 

  • Shivdasani RA, Mayer EL, Orkin SH . (1995). Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373: 432–434.

    CAS  PubMed  Google Scholar 

  • So CW, Lin M, Ayton PM, Chen EH, Cleary ML . (2003). Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 4: 99–110.

    CAS  PubMed  Google Scholar 

  • Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. (2005). HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 106: 274–286.

    CAS  PubMed  Google Scholar 

  • Takeuchi S, Seriu T, Bartram CR, Golub TR, Reiter A, Miyoshi I et al. (1997). TEL is one of the targets for deletion on 12p in many cases of childhood B-lineage acute lymphoblastic leukemia. Leukemia 11: 1220–1223.

    CAS  PubMed  Google Scholar 

  • Taub R, Kelly K, Battey J, Latt S, Lenoir GM, Tantravahi U et al. (1984). A novel alteration in the structure of an activated c-myc gene in a variant t(2;8) Burkitt lymphoma. Cell 37: 511–520.

    CAS  PubMed  Google Scholar 

  • Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S et al. (1982). Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79: 7837–7841.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thirman MJ, Levitan DA, Kobayashi H, Simon MC, Rowley JD . (1994). Cloning of ELL, a gene that fuses to MLL in a t(11;19)(q23;p13.1) in acute myeloid leukemia. Proc Natl Acad Sci USA 91: 12110–12114.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G et al. (2007). The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med 204: 1825–1835.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson CB . (1996). Transcription. A fate worse than death. Nature 382: 492–493.

    CAS  PubMed  Google Scholar 

  • Tkachuk DC, Kohler S, Cleary ML . (1992). Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 71: 691–700.

    CAS  PubMed  Google Scholar 

  • Tsuzuki S, Seto M, Greaves M, Enver T . (2004). Modeling first-hit functions of the t(12;21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA 101: 8443–8448.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valge-Archer VE, Osada H, Warren AJ, Forster A, Li J, Baer R et al. (1994). The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Proc Natl Acad Sci USA 91: 8617–8621.

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk MA, Peltenburg LT, Murre C . (1995). Hox gene products modulate the DNA binding activity of Pbx1 and Pbx2. Mech Dev 52: 99–108.

    CAS  PubMed  Google Scholar 

  • Van Dijk MA, Voorhoeve PM, Murre C . (1993). Pbx1 is converted into a transcriptional activator upon acquiring the N-terminal region of E2A in pre-B-cell acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 90: 6061–6065.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vlierberghe P, van Grotel M, Beverloo HB, Lee C, Helgason T, Buijs-Gladdines J et al. (2006). The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood 108: 3520–3529.

    CAS  PubMed  Google Scholar 

  • Vilimas T, Mascarenhas J, Palomero T, Mandal M, Buonamici S, Meng F et al. (2007). Targeting the NF-kappaB signaling pathway in Notch1-induced T-cell leukemia. Nat Med 13: 70–77.

    CAS  PubMed  Google Scholar 

  • Wadman I, Li J, Bash RO, Forster A, Osada H, Rabbitts TH et al. (1994). Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J 13: 4831–4839.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waldmann TA, Davis MM, Bongiovanni KF, Korsmeyer SJ . (1985). Rearrangements of genes for the antigen receptor on T cells as markers of lineage and clonality in human lymphoid neoplasms. N Engl J Med 313: 776–783.

    CAS  PubMed  Google Scholar 

  • Wang J, Jani-Sait SN, Escalon EA, Carroll AJ, de Jong PJ, Kirsch IR et al. (2000). The t(14;21)(q11.2;q22) chromosomal translocation associated with T-cell acute lymphoblastic leukemia activates the BHLHB1 gene. Proc Natl Acad Sci USA 97: 3497–3502.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Warren AJ, Colledge WH, Carlton MB, Evans MJ, Smith AJ, Rabbitts TH . (1994). The oncogenic cysteine-rich LIM domain protein rbtn2 is essential for erythroid development. Cell 78: 45–57.

    CAS  PubMed  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris JPt, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    CAS  PubMed  Google Scholar 

  • Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C et al. (2006). c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20: 2096–2109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson A, Radtke F . (2006). Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 580: 2860–2868.

    CAS  PubMed  Google Scholar 

  • Wu WS, Heinrichs S, Xu D, Garrison SP, Zambetti GP, Adams JM et al. (2005). Slug antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing puma. Cell 123: 641–653.

    CAS  PubMed  Google Scholar 

  • Xia Y, Brown L, Yang CY, Tsan JT, Siciliano MJ, Espinosa III R et al. (1991). TAL2, a helix–loop–helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. Proc Natl Acad Sci USA 88: 11416–11420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan W, Young AZ, Soares VC, Kelley R, Benezra R, Zhuang Y . (1997). High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol 17: 7317–7327.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. (2002). Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1: 133–143.

    CAS  PubMed  Google Scholar 

  • Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639–5649.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshihara T, Inaba T, Shapiro LH, Kato JY, Look AT . (1995). E2A-HLF-mediated cell transformation requires both the trans-activation domains of E2A and the leucine zipper dimerization domain of HLF. Mol Cell Biol 15: 3247–3255.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu BD, Hanson RD, Hess JL, Horning SE, Korsmeyer SJ . (1998). MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci USA 95: 10632–10636.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeisig BB, Garcia-Cuellar MP, Winkler TH, Slany RK . (2003). The oncoprotein MLL-ENL disturbs hematopoietic lineage determination and transforms a biphenotypic lymphoid/myeloid cell. Oncogene 22: 1629–1637.

    CAS  PubMed  Google Scholar 

  • Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J et al. (2006). NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 12: 3043–3049.

    CAS  PubMed  Google Scholar 

  • Ziemin-van der Poel S, McCabe NR, Gill HJ, Espinosa III R, Patel Y, Harden A et al. (1991). Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA 88: 10735–10739.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A Thomas Look is supported by the NIH (CA109901). Jennifer O'Neil is supported by a Harvard Medical School Hematology Training Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A T Look.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Neil, J., Look, A. Mechanisms of transcription factor deregulation in lymphoid cell transformation. Oncogene 26, 6838–6849 (2007). https://doi.org/10.1038/sj.onc.1210766

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210766

Keywords

This article is cited by

Search

Quick links