Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies

Abstract

L1 cell adhesion molecule (L1-CAM) is a transmembrane cell adhesion molecule involved in cell migration and axon guidance in the developing nervous system. L1 is also overexpressed in ovarian and endometrial carcinomas and is associated with a bad prognosis. In carcinoma cell lines, L1 overexpression augments cell motility, tumor growth in mice and induces expression of Erk-dependent genes. Here, we show that a mutation in the cytoplasmic portion of L1 (T1247A, S1248A) abrogates Erk activation, blocks cell migration on extracellular matrix proteins and did not augment tumor growth in non-obese diabetic/severe combined immuno-deficient mice. In cells expressing mutant L1, the induction of Erk-dependent genes such as β3-integrin, cathepsin-B and several transcription factors is eliminated and the invasive phenotype is abrogated. L1 antibodies showed similar effects. They prevented Erk activation and interfered with the Erk-dependent gene expression pattern. These findings provide a rationale for the mode of action of L1 antibodies and suggest that interference with L1 function could become a valuable target for therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

CRABPII:

cellular retinoic acid-binding protein II

Erk:

extracellular signal-regulated kinase

hL1:

human L1

hL1mutS:

human L1 with a mutation of S1248A

hL1mutTS:

human L1 with mutations of T1247A and S1248A

RA:

retinoic acid

References

  • Allory Y, Matsuoka Y, Bazille C, Christensen EI, Ronco P, Debiec H . (2005). The L1 cell adhesion molecule is induced in renal cancer cells and correlates with metastasis in clear cell carcinomas. Clin Cancer Res 11: 1190–1197.

    CAS  PubMed  Google Scholar 

  • Arlt MJ, Novak-Hofer I, Gast D, Gschwend V, Moldenhauer G, Grunberg J et al. (2006). Efficient inhibition of intra-peritoneal tumor growth and dissemination of human ovarian carcinoma cells in nude mice by anti-L1-cell adhesion molecule monoclonal antibody treatment. Cancer Res 66: 936–943.

    Article  CAS  Google Scholar 

  • Bar-Eli M . (2001). Gene regulation in melanoma progression by the AP-2 transcription factor. Pigment Cell Res 14: 78–85.

    Article  CAS  Google Scholar 

  • Brunner G, Reimbold K, Meissauer A, Schirrmacher V, Erkell LJ . (1998). Sulfated glycosaminoglycans enhance tumor cell invasion in vitro by stimulating plasminogen activation. Exp Cell Res 239: 301–310.

    Article  CAS  Google Scholar 

  • Cheng L, Itoh K, Lemmon V . (2005a). L1-mediated branching is regulated by two ezrin-radixin-moesin (ERM)-binding sites, the RSLE region and a novel juxtamembrane ERM-binding region. J Neurosci 25: 395–403.

    Article  CAS  Google Scholar 

  • Cheng L, Lemmon S, Lemmon V . (2005b). RanBPM is an L1-interacting protein that regulates L1-mediated mitogen-activated protein kinase activation. J Neurochem 94: 1102–1110.

    Article  CAS  Google Scholar 

  • Colucci-D'Amato L, Perrone-Capano C, diPorzio U . (2003). Chronic activation of ERK and neurodegenerative diseases. Bioessays 25: 1085–1095.

    Article  CAS  Google Scholar 

  • Fogel M, Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Smirnov A et al. (2003a). L1 expression as a predictor of progression and survival in patients with uterine and ovarian carcinomas. Lancet 362: 869–875.

    Article  CAS  Google Scholar 

  • Fogel M, Mechtersheimer S, Huszar M, Smirnov A, Abu DA, Tilgen W et al. (2003b). L1 adhesion molecule (CD171) in development and progression of human malignant melanoma. Cancer Lett 189: 237–247.

    Article  CAS  Google Scholar 

  • Gast D, Riedle S, Schabath H, Schlich S, Schneider A, Issa Y et al. (2005). L1 augments cell migration and tumor growth but not beta3 integrin expression in ovarian carcinomas. Int J Cancer 115: 658–665.

    Article  CAS  Google Scholar 

  • Gavert N, Conacci-Sorrell M, Gast D, Schneider A, Altevogt P, Brabletz T et al. (2005). L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 168: 633–642.

    Article  CAS  Google Scholar 

  • Gutwein P, Mechtersheimer S, Riedle S, Stoeck A, Gast D, Joumaa S et al. (2003). ADAM10-mediated cleavage of L1 adhesion molecule at the cell surface and in released membrane vesicles. FASEB J 17: 292–294.

    Article  CAS  Google Scholar 

  • Gutwein P, Oleszewski M, Mechtersheimer S, Agmon-Levin N, Krauss K, Altevogt P . (2000). Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275: 15490–15497.

    Article  CAS  Google Scholar 

  • Huszar M, Moldenhauer G, Gschwend V, Ben-Arie A, Altevogt P, Fogel M . (2006). Expression profile analysis in multiple human tumors identifies L1 (CD171) as a molecular marker for differential diagnosis and targeted therapy. Human Pathol 37: 1000–1008.

    Article  CAS  Google Scholar 

  • Ignelzi MA, Miller DR, Soriano P, Maness PF . (1994). Impaired neurite outgrowth of src-minus cerebellar neurons on the cell adhesion molecule L1. Neuron 12: 873–884.

    Article  CAS  Google Scholar 

  • Knogler K, Grunberg J, Zimmermann K, Cohrs S, Honer M, Ametamey S et al. (2007). Copper-67 radioimmunotherapy and growth inhibition by anti-L1-cell adhesion molecule monoclonal antibodies in a therapy model of ovarian cancer metastasis. Clin Cancer Res 13: 603–611.

    Article  CAS  Google Scholar 

  • Lotan R . (1996). Retinoids in cancer chemoprevention. FASEB J 10: 1031–1039.

    Article  CAS  Google Scholar 

  • Mechtersheimer S, Gutwein P, Agmon LN, Stoeck A, Oleszewski M, Riedle S et al. (2001). Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155: 661–674.

    Article  CAS  Google Scholar 

  • Meier F, Busch S, Gast D, Goppert A, Altevogt P, Maczey E et al. (2006). The adhesion molecule L1 (CD171) promotes melanoma progression. Int J Cancer 119: 549–555.

    Article  CAS  Google Scholar 

  • Moldenhauer G, Momburg F, Moller P, Schwartz R, Hammerling GJ . (1987). Epithelium-specific surface glycoprotein of Mr 34,000 is a widely distributed human carcinoma marker. Br J Cancer 56: 714–721.

    Article  CAS  Google Scholar 

  • Moos M, Tacke R, Scherer H, Teplow D, Fruh K, Schachner M . (1988). Neural adhesion molecule L1 as a member of the immunoglobulin superfamily with binding domains similar to fibronectin. Nature 334: 701–703.

    Article  CAS  Google Scholar 

  • Primiano T, Baig M, Maliyekkel A, Chang BD, Fellars S, Sadhu J et al. (2003). Identification of potential anticancer drug targets through the selection of growth-inhibitory genetic suppressor elements. Cancer Cell 4: 41–53.

    Article  CAS  Google Scholar 

  • Schaefer AW, Kamiguchi H, Wong EV, Beach CM, Landreth G, Lemmon V . (1999). Activation of the MAPK signal cascade by the neural cell adhesion molecule L1 requires L1 internalization. J Biol Chem 274: 37965–37973.

    Article  CAS  Google Scholar 

  • Schaeffer HJ, Weber MJ . (1999). Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19: 2435–2444.

    Article  CAS  Google Scholar 

  • Schmid RS, Pruitt WM, Maness PF . (2000). A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis. J Neurosci 20: 4177–4188.

    Article  CAS  Google Scholar 

  • Shtutman M, Levina E, Ohouo P, Baig M, Roninson IB . (2006). Cell adhesion molecule L1 disrupts E-cadherin-containing adherens junctions and increases scattering and motility of MCF7 breast carcinoma cells. Cancer Res 6: 11370–11380.

    Article  Google Scholar 

  • Senner V, Kismann E, Puttmann S, Hoess N, Baur I, Paulus W . (2002). L1 expressed by glioma cells promotes adhesion but not migration. Glia 38: 146–154.

    Article  Google Scholar 

  • Silletti S, Yebra M, Perez B, Cirulli V, McMahon M, Montgomery AM . (2004). Extracellular signal-regulated kinase (ERK)-dependent gene expression contributes to L1 cell adhesion molecule-dependent motility and invasion. J Biol Chem 279: 28880–28888.

    Article  CAS  Google Scholar 

  • Tang N, He M, O'Riordan MA, Farkas C, Buck K, Lemmon V et al. (2006). Ethanol inhibits L1 cell adhesion molecule activation of mitogen-activated protein kinases. J Neurochem 96: 1480–1490.

    Article  CAS  Google Scholar 

  • Thelen K, Kedar V, Panicker AK, Schmid RS, Midkiff BR, Maness PF . (2002). The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J Neurosci 22: 4918–4931.

    Article  CAS  Google Scholar 

  • Thies A, Schachner M, Moll I, Berger J, Schulze HJ, Brunner G et al. (2002). Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 38: 1708–1716.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Verena Gschwend and Natalie Erbe for excellent technical assistance. We thank our colleagues Christian Maerker for technical help with the initial chip analysis and Ilse Novak-Hofer for helpful discussion. This work was supported by grants from Deutsche Krebshilfe to PA and AK (10-1307-3Al and Schwerpunktprogramm: Invasion and Migration) and the EU-FP6 framework programme OVCAD project nr. PE-14034 to PA and MF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Altevogt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gast, D., Riedle, S., Issa, Y. et al. The cytoplasmic part of L1-CAM controls growth and gene expression in human tumors that is reversed by therapeutic antibodies. Oncogene 27, 1281–1289 (2008). https://doi.org/10.1038/sj.onc.1210747

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210747

Keywords

This article is cited by

Search

Quick links