Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells

Abstract

Apoptosis resistance is crucially involved in cancer development and progression, represents the leading cause for failure of anticancer therapy and is caused, for example, by downregulation of proapoptotic intracellular signaling molecules such as caspase-8. We found that the cytotoxic drugs methotrexate (MTX) and 5-fluorouracil (5-FU) were both able to sensitize resistant tumor cells for induction of apoptosis by p53-mediated upregulation of caspase-8. Increase in caspase-8 messenger RNA and protein expression disabled tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced proliferation and restored sensitivity toward TRAIL-induced apoptosis which was inhibited by transfection of p53 decoy oligonucleotides, p53 shRNA and caspase-8 shRNA. Upregulation of caspase-8 and sensitization toward TRAIL-induced apoptosis was found both in a broad panel of tumor cell lines with downregulated caspase-8 and in TRAIL-resistant primary tumor cells of children with acute leukemia. Taken together, we have identified caspase-8 as an important p53 target gene regulated by cytotoxic drugs. These findings highlight a new drug-induced modulation of physiological apoptosis pathways, which may be involved in successful anticancer therapy using MTX and 5-FU in leukemia and solid tumors over decades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ashley DM, Riffkin CD, Muscat AM, Knight MJ, Kaye AH, Novak U et al. (2005). Caspase 8 is absent or low in many ex vivo gliomas. Cancer 104: 1487–1496.

    Article  CAS  PubMed  Google Scholar 

  • Baader E, Toloczko A, Fuchs U, Schmid I, Beltinger C, Ehrhardt H et al. (2005). TRAIL-mediated proliferation of tumor cells with receptor-close apoptosis defects. Cancer Res 65: 7888–7895.

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV . (2002). p53: an ubiquitous target of anticancer drugs. Int J Cancer 98: 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Brummelkamp TR, Bernards R, Agami R . (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296: 550–553.

    Article  CAS  PubMed  Google Scholar 

  • Bykov VJN, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    Article  CAS  PubMed  Google Scholar 

  • Debatin KM, Krammer PH . (2004). Death receptors in chemotherapy and cancer. Oncogene 23: 2950–2966.

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt H, Fulda S, Führer M, Debatin KM, Jeremias I . (2004). Betulinic acid induced apoptosis in leukemia cells. Leukemia 18: 1406–1412.

    Article  CAS  PubMed  Google Scholar 

  • Ehrhardt H, Fulda S, Schmid I, Hiscott J, Debatin KM, Jeremias I . (2003). TRAIL-induced survival and proliferation in cancer cells resistant towards TRAIL-induced apoptosis mediated by NF-κB. Oncogene 22: 3842–3852.

    Article  CAS  PubMed  Google Scholar 

  • Fuster JJ, Sanz-González SM, Moll UM, Andrés V . (2007). Classical and novel roles of p53: prospects for anticancer therapy. Trends Mol Med 13: 192–199.

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Debatin KM . (2002). IFNgamma sensitizes for apoptosis by upregulating caspase-8 expression through the Stat1 pathway. Oncogene 21: 2295–2308.

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lazaro M, Fernandez-Gomez FJ, Jordan J . (2004). p53: twenty-five years understanding the mechanism of genome protection. J Physiol Biochem 60: 287–307.

    Article  CAS  PubMed  Google Scholar 

  • Jeremias I, Herr I, Boehler T, Debatin KM . (1998). TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur J Immunol 28: 143–152.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Fersht AR . (2007). Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26: 2226–2242.

    Article  CAS  PubMed  Google Scholar 

  • Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285: 1733–1737.

    Article  CAS  PubMed  Google Scholar 

  • Liedtke C, Groger N, Manns MP, Trautwein C . (2003). The human caspase-8 promoter sustains basal activity through SP1 and ETS-like transcription factors and can be up-regulated by a p53-dependent mechanism. J Biol Chem 278: 27593–27604.

    Article  CAS  PubMed  Google Scholar 

  • Meng RD, El-Deiry WS . (2001). p53-independent upregulation of KILLER/DR5 TRAIL receptor expression by glucocorticoids and interferon-γ. Exp Cell Res 262: 154–169.

    Article  CAS  PubMed  Google Scholar 

  • Milner J, Cook AC, Sheldon M . (1987). A new anti-p53 monoclonal antibody, previously reported to be directed against the large T antigen of simian virus 40. Oncogene 1: 453–455.

    CAS  PubMed  Google Scholar 

  • Muzio M, Chinnaiyan AM, Kischkel FC, O'Rourke K, Shevchenko A, Ni J et al. (1996). FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85: 817–827.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Matsumoto H, Wang X, Takahashi A, Tamamoto T, Ohnishi K . (1999). Restoration by glycerol of p53 dependent apoptosis in cells bearing the mutant p53 gene. Int J Radiat Biol 75: 1095–1098.

    Article  CAS  PubMed  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 Database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  PubMed  Google Scholar 

  • Özören N, El-Deiry WS . (2003). Cell surface death receptor signaling in normal and cancer cells. Semin Cancer Biol 13: 135–147.

    Article  PubMed  Google Scholar 

  • Pingoud-Meier C, Lang D, Janss AJ, Rorke LB, Phillips PC, Shalaby T et al. (2003). Downregulation of caspase-8 protein expression correlates with unfavorable survival outcome in childhood medulloblastoma. Clin Cancer Res 9: 6401–6409.

    CAS  PubMed  Google Scholar 

  • Resnick MA, Inga A . (2003). Functional mutants of the sequence-specific transcription factor p53 and implications for master gene diversity. Proc Natl Acad Sci USA 100: 9934–9939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selivanova G, Iotsova V, Okan I, Fritsche M, Strom M, Groner B et al. (1997). Restoration of the growth suppression function of mutant p53 by a synthetic peptide derived from the p53 C-terminal domain. Nat Med 3: 632–638.

    Article  CAS  PubMed  Google Scholar 

  • Shankar S, Srivastava RK . (2004). Enhancement of therapeutic potential of TRAIL by cancer chemotherapy and irradiation: mechanisms and clinical implications. Drug Resist update 7: 139–156.

    Article  CAS  Google Scholar 

  • Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G . (2007). Mutant p53: an oncogenic transcription factor. Oncogene 26: 2212–2219.

    Article  CAS  PubMed  Google Scholar 

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. (2000). Caspase-8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6: 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Wagner KW, Engels IH, Deveraux QL . (2004). Caspase-2 can function upstream of bid cleavage in the TRAIL apoptosis pathway. J Biol Chem 279: 35047–35052.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, El-Deiry WS . (2003a). Requirement of p53 targets in chemosensitization of colonic carcinoma to death ligand therapy. Proc Natl Acad Soc 100: 15095–15100.

    Article  CAS  Google Scholar 

  • Wang S, El-Deiry WS . (2003b). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22: 8628–8633.

    Article  CAS  PubMed  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. (2003). Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4: 609–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We appreciate the skilled technical work of P Berger and D Föttinger. This work was supported by Wilhelm Sander-Stiftung, Deutsche Jose Carreras Leukämie Stiftung, FöFoLe no. 19-2005, Dr Helmut Legerlotz Stiftung and Bettina Bräu Stiftung (all to IJ), and the Deutsche Forschungsgemeinschaft (to SF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Jeremias.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhardt, H., Häcker, S., Wittmann, S. et al. Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene 27, 783–793 (2008). https://doi.org/10.1038/sj.onc.1210666

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210666

Keywords

This article is cited by

Search

Quick links