Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases

Abstract

The regulated dephosphorylation of mitogen-activated protein kinases (MAPKs) plays a key role in determining the magnitude and duration of kinase activation and hence the physiological outcome of signalling. In mammalian cells, an important component of this control is mediated by the differential expression and activities of a family of 10 dual-specificity (Thr/Tyr) MAPK phosphatases (MKPs). These enzymes share a common structure in which MAPK substrate recognition is determined by sequences within an amino-terminal non-catalytic domain whereas MAPK binding often leads to a conformational change within the C-terminal catalytic domain resulting in increased enzyme activity. MKPs can either recognize and inactivate a single class of MAP kinase, as in the specific inactivation of extracellular signal regulated kinase (ERK) by the cytoplasmic phosphatase DUSP6/MKP-3 or can regulate more than one MAPK pathway as illustrated by the ability of DUSP1/MKP-1 to dephosphorylate ERK, c-Jun amino-terminal kinase and p38 in the cell nucleus. These properties, coupled with transcriptional regulation of MKP expression in response to stimuli that activate MAPK signalling, suggest a complex negative regulatory network in which individual MAPK activities can be subject to negative feedback control, but also raise the possibility that signalling through multiple MAPK pathways may be integrated at the level of regulation by MKPs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adams RH, Porras A, Alonso G, Jones M, Vintersten K, Panelli S et al. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol Cell 6: 109–116.

    Article  CAS  Google Scholar 

  • Bordo D, Bork P . (2002). The rhodanese/Cdc25 phosphatase superfamily. Sequence-Structure-Function relations. EMBO Rep 3: 741–746.

    Article  CAS  Google Scholar 

  • Bott CM, Thorneycroft SG, Marshall CJ . (1994). The sevenmaker gain-of-function mutation in p42 MAP kinase leads to enhanced signalling and reduced sensitivity to dual specificity phosphatase action. FEBS Lett 352: 201–205.

    Article  CAS  Google Scholar 

  • Camps M, Nichols A, Arkinstall S . (2000). Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J 14: 6–16.

    Article  CAS  Google Scholar 

  • Camps M, Nichols A, Gillieron C, Antonsson B, Muda M, Chabert C et al. (1998). Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science 280: 1262–1265.

    Article  CAS  Google Scholar 

  • Chang CI, Xu BE, Akella R, Cobb MH, Goldsmith EJ . (2002). Crystal structures of MAP kinase p38 complexed to the docking sites on its nuclear substrate MEF2A and activator MKK3b. Mol Cell 9: 1241–1249.

    Article  CAS  Google Scholar 

  • Chang L, Karin M . (2001). Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    Article  CAS  Google Scholar 

  • Chen P, Hutter D, Yang X, Gorospe M, Davis RJ, Liu Y . (2001). Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically. J Biol Chem 276: 29440–29449.

    Article  CAS  Google Scholar 

  • Chi H, Barry SP, Roth RJ, Wu JJ, Jones EA, Bennett AM et al. (2006). Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci USA 103: 2274–2279.

    Article  CAS  Google Scholar 

  • Christie GR, Williams DJ, Macisaac F, Dickinson RJ, Rosewell I, Keyse SM . (2005). The dual-specificity protein phosphatase DUSP9/MKP-4 is essential for placental function but is not required for normal embryonic development. Mol Cell Biol 25: 8323–8333.

    Article  CAS  Google Scholar 

  • Chu Y, Solski PA, Khosravi-Far R, Der CJ, Kelly K . (1996). The mitogen-activated protein kinase phosphatases PAC1, MKP-1, and MKP-2 have unique substrate specificities and reduced activity in vivo toward the ERK2 sevenmaker mutation. J Biol Chem 271: 6497–6501.

    Article  CAS  Google Scholar 

  • Dickinson RJ, Eblaghie MC, Keyse SM, Morriss-Kay GM . (2002a). Expression of the ERK-specific MAP kinase phosphatase PYST1/MKP3 in mouse embryos during morphogenesis and early organogenesis. Mech Dev 113: 193–196.

    Article  CAS  Google Scholar 

  • Dickinson RJ, Williams DJ, Slack DN, Williamson J, Seternes OM, Keyse SM . (2002b). Characterization of a murine gene encoding a developmentally regulated cytoplasmic dual-specificity mitogen-activated protein kinase phosphatase. Biochem J 364: 145–155.

    Article  CAS  Google Scholar 

  • Dimitri CA, Dowdle W, MacKeigan JP, Blenis J, Murphy LO . (2005). Spatially separate docking sites on ERK2 regulate distinct signaling events in vivo. Curr Biol 15: 1319–1324.

    Article  CAS  Google Scholar 

  • Dong C, Davis RJ, Flavell RA . (2002). MAP kinases in the immune response. Annu Rev Immunol 20: 55–72.

    Article  CAS  Google Scholar 

  • Dong C, Yang DD, Wysk M, Whitmarsh AJ, Davis RJ, Flavell RA . (1998). Defective T cell differentiation in the absence of Jnk1. Science 282: 2092–2095.

    Article  CAS  Google Scholar 

  • Dorfman K, Carrasco D, Gruda M, Ryan C, Lira SA, Bravo R . (1996). Disruption of the erp/mkp-1 gene does not affect mouse development: normal MAP kinase activity in ERP/MKP-1-deficient fibroblasts. Oncogene 13: 925–931.

    CAS  PubMed  Google Scholar 

  • Ebisuya M, Kondoh K, Nishida E . (2005). The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118: 2997–3002.

    Article  CAS  Google Scholar 

  • Eblaghie MC, Lunn JS, Dickinson RJ, Munsterberg AE, Sanz-Ezquerro JJ, Farrell ER et al. (2003). Negative feedback regulation of FGF signaling levels by Pyst1/MKP3 in chick embryos. Curr Biol 13: 1009–1018.

    Article  CAS  Google Scholar 

  • Farooq A, Chaturvedi G, Mujtaba S, Plotnikova O, Zeng L, Dhalluin C et al. (2001). Solution structure of ERK2 binding domain of MAPK phosphatase MKP-3: structural insights into MKP-3 activation by ERK2. Mol Cell 7: 387–399.

    Article  CAS  Google Scholar 

  • Farooq A, Plotnikova O, Chaturvedi G, Yan S, Zeng L, Zhang Q et al. (2003). Solution structure of the MAPK phosphatase PAC-1 catalytic domain. Insights into substrate-induced enzymatic activation of MKP. Structure 11: 155–164.

    Article  CAS  Google Scholar 

  • Giroux S, Tremblay M, Bernard D, Cardin-Girard JF, Aubry S, Larouche L et al. (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol 9: 369–372.

    Article  CAS  Google Scholar 

  • Gomez AR, Lopez-Varea A, Molnar C, de la Calle-Mustienes E, Ruiz-Gomez M, Gomez-Skarmeta JL et al. (2005). Conserved cross-interactions in Drosophila and Xenopus between Ras/MAPK signaling and the dual-specificity phosphatase MKP3. Dev Dyn 232: 695–708.

    Article  CAS  Google Scholar 

  • Groom LA, Sneddon AA, Alessi DR, Dowd S, Keyse SM . (1996). Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J 15: 3621–3632.

    Article  CAS  Google Scholar 

  • Grumont RJ, Rasko JE, Strasser A, Gerondakis S . (1996). Activation of the mitogen-activated protein kinase pathway induces transcription of the PAC-1 phosphatase gene. Mol Cell Biol 16: 2913–2921.

    Article  CAS  Google Scholar 

  • Hammer M, Mages J, Dietrich H, Servatius A, Howells N, Cato AC et al. (2006). Dual specificity phosphatase 1 (DUSP1) regulates a subset of LPS-induced genes and protects mice from lethal endotoxin shock. J Exp Med 203: 15–20.

    Article  CAS  Google Scholar 

  • Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ et al. (2006). Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat Immunol 7: 274–283.

    Article  CAS  Google Scholar 

  • Jeong DG, Cho YH, Yoon TS, Kim JH, Ryu SE, Kim SJ . (2006a). Crystal structure of the catalytic domain of human DUSP5, a dual specificity MAP kinase protein phosphatase. Proteins 66: 253–258.

    Article  Google Scholar 

  • Jeong DG, Yoon TS, Kim JH, Shim MY, Jung SK, Son JH et al. (2006b). Crystal structure of the catalytic domain of human MAP kinase phosphatase 5: structural insight into constitutively active phosphatase. J Mol Biol 360: 946–955.

    Article  CAS  Google Scholar 

  • Kawakami Y, Rodriguez-Leon J, Koth CM, Buscher D, Itoh T, Raya A et al. (2003). MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol 5: 513–519.

    Article  CAS  Google Scholar 

  • Keyse SM . (2000). Protein phosphatases and the regulation of mitogen-activated protein kinase signalling. Curr Opin Cell Biol 12: 186–192.

    Article  CAS  Google Scholar 

  • Keyse SM, Ginsburg M . (1993). Amino acid sequence similarity between CL100, a dual-specificity MAP kinase phosphatase and cdc25. Trends Biochem Sci 18: 377–378.

    Article  CAS  Google Scholar 

  • Lee T, Hoofnagle AN, Kabuyama Y, Stroud J, Min X, Goldsmith EJ et al. (2004). Docking motif interactions in MAP kinases revealed by hydrogen exchange mass spectrometry. Mol Cell 14: 43–55.

    Article  CAS  Google Scholar 

  • Li C, Scott DA, Hatch E, Tian X, Mansour SL . (2007). Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development 134: 167–176.

    Article  CAS  Google Scholar 

  • Liu S, Sun JP, Zhou B, Zhang ZY . (2006). Structural basis of docking interactions between ERK2 and MAP kinase phosphatase 3. Proc Natl Acad Sci USA 103: 5326–5331.

    Article  CAS  Google Scholar 

  • Mandell JG, Falick AM, Komives EA . (1998). Identification of protein-protein interfaces by decreased amide proton solvent accessibility. Proc Natl Acad Sci USA 95: 14705–14710.

    Article  CAS  Google Scholar 

  • Mandl M, Slack DN, Keyse SM . (2005). Specific inactivation and nuclear anchoring of extracellular signal-regulated kinase 2 by the inducible dual-specificity protein phosphatase DUSP5. Mol Cell Biol 25: 1830–1845.

    Article  CAS  Google Scholar 

  • Marshall CJ . (1994). MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 4: 82–89.

    Article  CAS  Google Scholar 

  • Marshall CJ . (1995). Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80: 179–185.

    Article  CAS  Google Scholar 

  • Morrison DK, Davis RJ . (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu Rev Cell Dev Biol 19: 91–118.

    Article  CAS  Google Scholar 

  • Muda M, Theodosiou A, Gillieron C, Smith A, Chabert C, Camps M et al. (1998). The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity. J Biol Chem 273: 9323–9329.

    Article  CAS  Google Scholar 

  • Muda M, Theodosiou A, Rodrigues N, Boschert U, Camps M, Gillieron C et al. (1996). The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J Biol Chem 271: 27205–27208.

    Article  CAS  Google Scholar 

  • Murphy LO, Blenis J . (2006). MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 268–275.

    Article  CAS  Google Scholar 

  • Nichols A, Camps M, Gillieron C, Chabert C, Brunet A, Wilsbacher J et al. (2000). Substrate recognition domains within extracellular signal-regulated kinase mediate binding and catalytic activation of mitogen-activated protein kinase phosphatase-3. J Biol Chem 275: 24613–24621.

    Article  CAS  Google Scholar 

  • Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K et al. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22: 153–183.

    CAS  Google Scholar 

  • Rigas JD, Hoff RH, Rice AE, Hengge AC, Denu JM . (2001). Transition state analysis and requirement of Asp-262 general acid/base catalyst for full activation of dual-specificity phosphatase MKP3 by extracellular regulated kinase. Biochemistry 40: 4398–4406.

    Article  CAS  Google Scholar 

  • Rohan PJ, Davis P, Moskaluk CA, Kearns M, Krutzsch H, Siebenlist U et al. (1993). PAC-1: a mitogen-induced nuclear protein tyrosine phosphatase. Science 259: 1763–1766.

    Article  CAS  Google Scholar 

  • Salojin KV, Owusu IB, Millerchip KA, Potter M, Platt KA, Oravecz T . (2006). Essential role of MAPK phosphatase-1 in the negative control of innate immune responses. J Immunol 176: 1899–1907.

    Article  CAS  Google Scholar 

  • Saxena M, Mustelin T . (2000). Extracellular signals and scores of phosphatases: all roads lead to MAP kinase. Semin Immunol 12: 387–396.

    Article  CAS  Google Scholar 

  • Slack DN, Seternes OM, Gabrielsen M, Keyse SM . (2001). Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem 276: 16491–16500.

    Article  CAS  Google Scholar 

  • Smith TG, Karlsson M, Lunn JS, Eblaghie MC, Keenan ID, Farrell ER et al. (2006). Negative feedback predominates over cross-regulation to control ERK MAPK activity in response to FGF signalling in embryos. FEBS Lett 580: 4242–4245.

    Article  CAS  Google Scholar 

  • Smith TG, Sweetman D, Patterson M, Keyse SM, Munsterberg A . (2005). Feedback interactions between MKP3 and ERK MAP kinase control scleraxis expression and the specification of rib progenitors in the developing chick somite. Development 132: 1305–1314.

    Article  CAS  Google Scholar 

  • Stewart AE, Dowd S, Keyse SM, McDonald NQ . (1999). Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation. Nat Struct Biol 6: 174–181.

    Article  CAS  Google Scholar 

  • Tanoue T, Adachi M, Moriguchi T, Nishida E . (2000). A conserved docking motif in MAP kinases common to substrates, activators and regulators. Nat Cell Biol 2: 110–116.

    Article  CAS  Google Scholar 

  • Tanoue T, Maeda R, Adachi M, Nishida E . (2001a). Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J 20: 466–479.

    Article  CAS  Google Scholar 

  • Tanoue T, Moriguchi T, Nishida E . (1999). Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5. J Biol Chem 274: 19949–19956.

    Article  CAS  Google Scholar 

  • Tanoue T, Yamamoto T, Maeda R, Nishida E . (2001b). A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs. J Biol Chem 276: 26629–26639.

    Article  CAS  Google Scholar 

  • Tanoue T, Yamamoto T, Nishida E . (2002). Modular structure of a docking surface on MAPK phosphatases. J Biol Chem 277: 22942–22949.

    Article  CAS  Google Scholar 

  • Theodosiou A, Ashworth A . (2002). MAP kinase phosphatases. Genome Biol 3: REVIEWS3009.

  • Tsang M, Maegawa S, Kiang A, Habas R, Weinberg E, Dawid IB . (2004). A role for MKP3 in axial patterning of the zebrafish embryo. Development 131: 2769–2779.

    Article  CAS  Google Scholar 

  • Volmat V, Pouyssegur J . (2001). Spatiotemporal regulation of the p42/p44 MAPK pathway. Biol Cell 93: 71–79.

    Article  CAS  Google Scholar 

  • Wada T, Penninger JM . (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838–2849.

    Article  CAS  Google Scholar 

  • Willoughby EA, Collins MK . (2005). Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2. J Biol Chem 280: 25651–25658.

    Article  CAS  Google Scholar 

  • Willoughby EA, Perkins GR, Collins MK, Whitmarsh AJ . (2003). The JNK-interacting protein-1 scaffold protein targets MAPK phosphatase-7 to dephosphorylate JNK. J Biol Chem 278: 10731–10736.

    Article  CAS  Google Scholar 

  • Wu JJ, Roth RJ, Anderson EJ, Hong EG, Lee MK, Choi CS et al. (2006). Mice lacking MAP kinase phosphatase-1 have enhanced MAP kinase activity and resistance to diet-induced obesity. Cell Metab 4: 61–73.

    Article  CAS  Google Scholar 

  • Wu JJ, Zhang L, Bennett AM . (2005). The noncatalytic amino terminus of mitogen-activated protein kinase phosphatase 1 directs nuclear targeting and serum response element transcriptional regulation. Mol Cell Biol 25: 4792–4803.

    Article  CAS  Google Scholar 

  • Yin Y, Liu YX, Jin YJ, Hall EJ, Barrett JC . (2003). PAC1 phosphatase is a transcription target of p53 in signalling apoptosis and growth suppression. Nature 422: 527–531.

    Article  CAS  Google Scholar 

  • Zhang Q, Muller M, Chen CH, Zeng L, Farooq A, Zhou MM . (2005). New insights into the catalytic activation of the MAPK phosphatase PAC-1 induced by its substrate MAPK ERK2 binding. J Mol Biol 354: 777–788.

    Article  CAS  Google Scholar 

  • Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y et al. (2004). Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430: 793–797.

    Article  CAS  Google Scholar 

  • Zhao Q, Wang X, Nelin LD, Yao Y, Matta R, Manson ME et al. (2006). MAP kinase phosphatase 1 controls innate immune responses and suppresses endotoxic shock. J Exp Med 203: 131–140.

    Article  CAS  Google Scholar 

  • Zhou B, Wu L, Shen K, Zhang J, Lawrence DS, Zhang ZY . (2001). Multiple regions of MAP kinase phosphatase 3 are involved in its recognition and activation by ERK2. J Biol Chem 276: 6506–6515.

    Article  CAS  Google Scholar 

  • Zhou B, Zhang J, Liu S, Reddy S, Wang F, Zhang ZY . (2006). Mapping ERK2-MKP3 binding interfaces by hydrogen/deuterium exchange mass spectrometry. J Biol Chem 281: 38834–38844.

    Article  CAS  Google Scholar 

  • Zhou B, Zhang ZY . (1999). Mechanism of mitogen-activated protein kinase phosphatase-3 activation by ERK2. J Biol Chem 274: 35526–35534.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Keyse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owens, D., Keyse, S. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 26, 3203–3213 (2007). https://doi.org/10.1038/sj.onc.1210412

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210412

Keywords

This article is cited by

Search

Quick links