Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes

Abstract

A large amount of data is available on the functional impact of missense mutations in TP53 and on mutation patterns in many different cancers. New data on mutant p53 protein function, cancer phenotype and prognosis have recently been integrated in the International Agency for Research on Cancer TP53 database (http://www-p53.iarc.fr/). Based on these data, we summarize here current knowledge on the respective roles of mutagenesis and biological selection of mutations with specific functional characteristic in shaping the patterns and phenotypes of mutations observed in human cancers. The main conclusion is that intrinsic mutagenicity rates, loss of transactivation activities, and to a lesser extent, dominant-negative activities are the main driving forces that determine TP53 mutation patterns and influence tumor phenotype. In contrast, current experimental data on the acquisition of oncogenic activities (gain of function) by p53 mutants are too scarce and heterogenous to assess whether this property has an impact on tumor development and outcome. In the case of inherited TP53 mutations causing Li–Fraumeni and related syndromes, the age at onset of some tumor types is in direct relation with the degree of loss of transactivation capacity of missense mutations. Finally, studies on large case series demonstrate that TP53 mutations are independent markers of bad prognosis in breast and several other cancers, and that the exact type and position of the mutation influences disease outcome. Further studies are needed to determine how TP53 haplotypes or loss of alleles interact with mutations to modulate their impact on cancer development and prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Achatz MI, Olivier M, Calvez FL, Martel-Planche G, Lopes A, Rossi BM et al. (2007). The TP53 mutation, R337H, is associated with Li-Fraumeni and Li-Fraumeni-like syndromes in Brazilian families. Cancer Lett 245: 96–102.

    Article  CAS  Google Scholar 

  • Beckman G, Birgander R, Sjalander A, Saha N, Holmberg PA, Kivela A et al. (1994). Is p53 polymorphism maintained by natural selection? Hum Hered 44: 266–270.

    Article  CAS  Google Scholar 

  • Bergamaschi D, Gasco M, Hiller L, Sullivan A, Syed N, Trigiante G et al. (2003). p53 Polymorphism influences response in cancer chemotherapy via modulation of p73-dependent apoptosis. Cancer Cell 3: 387–402.

    Article  CAS  Google Scholar 

  • Birch JM, Blair V, Kelsey AM, Evans DG, Harris M, Tricker KJ et al. (1998). Cancer phenotype correlates with constitutional TP53 genotype in families with the Li-Fraumeni syndrome. Oncogene 17: 1061–1068.

    Article  CAS  Google Scholar 

  • Bonafe M, Ceccarelli C, Farabegoli F, Santini D, Taffurelli M, Barbi C et al. (2003). Retention of the p53 codon 72 arginine allele is associated with a reduction of disease-free and overall survival in arginine/proline heterozygous breast cancer patients. Clin Cancer Res 9: 4860–4864.

    CAS  PubMed  Google Scholar 

  • Bond GL, Hirshfield KM, Kirchhoff T, Alexe G, Bond EE, Robins H et al. (2006). MDM2 SNP309 accelerates tumor formation in a gender-specific and hormone-dependent manner. Cancer Res 66: 5104–5110.

    Article  CAS  Google Scholar 

  • Bond GL, Hu W, Bond EE, Robins H, Lutzker SG, Arva NC et al. (2004). A single nucleotide polymorphism in the MDM2 promoter attenuates the p53 tumor suppressor pathway and accelerates tumor formation in humans. Cell 119: 591–602.

    Article  CAS  Google Scholar 

  • Bougeard G, Baert-Desurmont S, Tournier I, Vasseur S, Martin C, Brugieres L et al. (2006). Impact of the MDM2 SNP309 and p53 Arg72Pro polymorphism on age of tumour onset in Li-Fraumeni syndrome. J Med Genet 43: 531–533.

    Article  CAS  Google Scholar 

  • Bougeard G, Brugieres L, Chompret A, Gesta P, Charbonnier F, Valent A et al. (2003). Screening for TP53 rearrangements in families with the Li-Fraumeni syndrome reveals a complete deletion of the TP53 gene. Oncogene 22: 840–846.

    Article  CAS  Google Scholar 

  • Brachmann RK, Vidal M, Boeke JD . (1996). Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci USA 93: 4091–4095.

    Article  CAS  Google Scholar 

  • Bull SB, Ozcelik H, Pinnaduwage D, Blackstein ME, Sutherland DA, Pritchard KI et al. (2004). The combination of p53 mutation and neu/erbB-2 amplification is associated with poor survival in node-negative breast cancer. J Clin Oncol 22: 86–96.

    Article  CAS  Google Scholar 

  • Dearth LR, Qian H, Wang T, Baroni TE, Zeng J, Chen SW et al. (2006). Inactive full-length p53 mutants lacking dominant wild-type p53 inhibition highlight loss-of-heterozygosity as an important aspect of p53 status in human cancers. Carcinogenesis.

  • Denissenko MF, Pao A, Tang M, Pfeifer GP . (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274: 430–432.

    Article  CAS  Google Scholar 

  • DiGiammarino EL, Lee AS, Cadwell C, Zhang W, Bothner B, Ribeiro RC et al. (2002). A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nat Struct Biol 9: 12–16.

    Article  CAS  Google Scholar 

  • Dumont P, Leu JI, Della III PA, George DL, Murphy M . (2003). The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33: 357–365.

    Article  CAS  Google Scholar 

  • Gemignani F, Moreno V, Landi S, Moullan N, Chabrier A, Gutierrez-Enriquez S et al. (2004). A TP53 polymorphism is associated with increased risk of colorectal cancer and with reduced levels of TP53 mRNA. Oncogene 23: 1954–1956.

    Article  CAS  Google Scholar 

  • Hainaut P, Hollstein M . (2000). p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77: 81–137.

    Article  CAS  Google Scholar 

  • Harris SL, Gil G, Hu W, Robins H, Bond E, Hirshfield K et al. (2005). Single-nucleotide polymorphisms in the p53 pathway. Cold Spring Harb Symp Quant Biol 70: 111–119.

    Article  CAS  Google Scholar 

  • Helland A, Langerod A, Johnsen H, Olsen AO, Skovlund E, Borresen-Dale AL . (1998). p53 Polymorphism and risk of cervical cancer [letter]. Nature 396: 530–531.

    Article  CAS  Google Scholar 

  • Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B et al. (1990). Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the ‘hot spot’ mutant phenotypes. Cell Growth Differ 1: 571–580.

    CAS  PubMed  Google Scholar 

  • Kato S, Han SY, Liu W, Otsuka K, Shibata H, Kanamaru R et al. (2003). Understanding the function–structure and function–mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci USA 100: 8424–8429.

    Article  CAS  Google Scholar 

  • Klug SJ, Wilmotte R, Santos C, Almonte M, Herrero R, Guerrero I et al. (2001). TP53 polymorphism, HPV infection, and risk of cervical cancer. 10: 1009–1012.

  • Kochethu G, Delgado J, Pepper C, Starczynski J, Hooper L, Krishnan S et al. (2006). Two germ line polymorphisms of the tumour suppressor gene p53 may influence the biology of chronic lymphocytic leukaemia. Leuk Res 30: 1113–1118.

    Article  CAS  Google Scholar 

  • Koushik A, Platt RW, Franco EL . (2004). p53 Codon 72 polymorphism and cervical neoplasia: a meta-analysis review. Cancer Epidemiol Biomarkers Prev 13: 11–22.

    Article  CAS  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  Google Scholar 

  • Langerod A, Bukholm IR, Bregard A, Lonning PE, Andersen TI, Rognum TO et al. (2002). The TP53 codon 72 polymorphism may affect the function of TP53 mutations in breast carcinomas but not in colorectal carcinomas. Cancer Epidemiol Biomarkers Prev 11: 1684–1688.

    CAS  PubMed  Google Scholar 

  • Langerod A, Burdette L, Yeager M, Llaca V, Presswalla S, Gerhard DS et al. (2006a). Pattern of genetic variation in the tp53 locus indicates linkage disequilibrium extends across the flanking genes, ATP1B2 and WDR79. Hum Mutat (in press).

  • Langerod A, Zhao H, Borgan O, Nesland JM, Bukholm IK, Ikdahl T et al. (2006b). TP53 mutation status and gene expression profiles are powerful prognostic markers of breast cancer. Breast Cancer Res (in press).

  • Le Calvez F, Ahman A, Tonisson N, Lambert J, Temam S, Brennan P et al. (2005). Arrayed primer extension resequencing of mutations in the TP53 tumor suppressor gene: comparison with denaturing HPLC and direct sequencing. Clin Chem 51: 1284–1287.

    Article  CAS  Google Scholar 

  • Lunter G, Hein J . (2004). A nucleotide substitution model with nearest-neighbour interactions. Bioinformatics 20 (Suppl 1): I216–I223.

    Article  CAS  Google Scholar 

  • Malkin D, Li FP, Strong LC, Fraumeni JFJ, Nelson CE, Kim DH et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238.

    Article  CAS  Google Scholar 

  • Marin MC, Jost CA, Brooks LA, Irwin MS, O'Nions J, Tidy JA et al. (2000). A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nat Genet 25: 47–54.

    Article  CAS  Google Scholar 

  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 102: 13550–13555.

    Article  CAS  Google Scholar 

  • Nelson HH, Wilkojmen M, Marsit CJ, Kelsey KT . (2005). TP53 mutation, allelism and survival in non-small cell lung cancer. Carcinogenesis 26: 1770–1773.

    Article  CAS  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  Google Scholar 

  • Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P . (2002). The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19: 607–614.

    Article  CAS  Google Scholar 

  • Olivier M, Goldgar DE, Sodha N, Ohgaki H, Kleihues P, Hainaut P et al. (2003). Li-Fraumeni and related syndromes: correlation between tumor type, family structure, and TP53 genotype. Cancer Res 63: 6643–6650.

    CAS  PubMed  Google Scholar 

  • Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J et al. (2006). The clinical value of somatic TP53 gene mutations in 1,794 patients with breast cancer. Clin Cancer Res 12: 1157–1167.

    Article  CAS  Google Scholar 

  • Ory K, Legros Y, Auguin C, Soussi T . (1994). Analysis of the most representative tumour-derived p53 mutants reveals that changes in protein conformation are not correlated with loss of transactivation or inhibition of cell proliferation. EMBO J 13: 3496–3504.

    Article  CAS  Google Scholar 

  • Pim D, Banks L . (2004). p53 Polymorphic variants at codon 72 exert different effects on cell cycle progression. Int J Cancer 108: 196–199.

    Article  CAS  Google Scholar 

  • Ribeiro RC, Sandrini F, Figueiredo B, Zambetti GP, Michalkiewicz E, Lafferty AR et al. (2001). An inherited p53 mutation that contributes in a tissue-specific manner to pediatric adrenal cortical carcinoma. Proc Natl Acad Sci USA 98: 9330–9335.

    Article  CAS  Google Scholar 

  • Santos AM, Sousa H, Portela C, Pereira D, Pinto D, Catarino R et al. (2006). TP53 and P21 polymorphisms: response to cisplatinum/paclitaxel-based chemotherapy in ovarian cancer. Biochem Biophys Res Commun 340: 256–262.

    Article  CAS  Google Scholar 

  • Schneider-Stock R, Mawrin C, Motsch C, Boltze C, Peters B, Hartig R et al. (2004). Retention of the arginine allele in codon 72 of the p53 gene correlates with poor apoptosis in head and neck cancer. Am J Pathol 164: 1233–1241.

    Article  CAS  Google Scholar 

  • Siddique M, Sabapathy K . (2006). Trp53-dependent DNA-repair is affected by the codon 72 polymorphism. Oncogene 25: 3489–3500.

    Article  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  Google Scholar 

  • Storey A, Thomas M, Kalita A, Harwood C, Gardiol D, Mantovani F et al. (1998). Role of a p53 polymorphism in the development of human papillomavirus-associated cancer. Nature 393: 229–234.

    Article  CAS  Google Scholar 

  • Sullivan A, Syed N, Gasco M, Bergamaschi D, Trigiante G, Attard M et al. (2004). Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo. Oncogene 23: 3328–3337.

    Article  CAS  Google Scholar 

  • Tada M, Furuuchi K, Kaneda M, Matsumoto J, Takahashi M, Hirai A et al. (2001). Inactivate the remaining p53 allele or the alternate p73? Preferential selection of the Arg72 polymorphism in cancers with recessive p53 mutants but not transdominant mutants. Carcinogenesis 22: 515–517.

    Article  CAS  Google Scholar 

  • Thomas M, Kalita A, Labrecque S, Pim D, Banks L, Matlashewski G . (1999). Two polymorphic variants of wild-type p53 differ biochemically and biologically. Mol Cell Biol 19: 1092–1100.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Wang Y, Kringen P, Kristensen GB, Holm R, Baekelandt MM, Olivier M et al. (2004). Effect of the codon 72 polymorphism (c.215G>C, p.Arg72Pro) in combination with somatic sequence variants in the TP53 gene on survival in patients with advanced ovarian carcinoma. Hum Mutat 24: 21–34.

    Article  Google Scholar 

  • Wegman P, Stal O, Askmalm MS, Nordenskjold B, Rutqvist LE, Wingren S . (2006). p53 Polymorphic variants at codon 72 and the outcome of therapy in randomized breast cancer patients. Pharmacogenet Genomics 16: 347–351.

    Article  CAS  Google Scholar 

  • Wong P, Verselis SJ, Garber JE, Schneider K, DiGianni L, Stockwell DH et al. (2006). Prevalence of early onset colorectal cancer in 397 patients with classic Li–Fraumeni syndrome. Gastroenterology 130: 73–79.

    Article  Google Scholar 

  • Wu X, Zhao H, Amos CI, Shete S, Makan N, Hong WK et al. (2002). p53 Genotypes and haplotypes associated with lung cancer susceptibility and ethnicity. J Natl Cancer Inst 94: 681–690.

    Article  CAS  Google Scholar 

  • Xu Y, Yao L, Ouyang T, Li J, Wang T, Fan Z et al. (2005). p53 Codon 72 polymorphism predicts the pathologic response to neoadjuvant chemotherapy in patients with breast cancer. Clin Cancer Res 11: 7328–7333.

    Article  CAS  Google Scholar 

  • Zajac V, Tomka M, Ilencikova D, Majek P, Stevurkova V, Kirchhoff T . (2000). A double germline mutations in the APC and p53 genes. Neoplasma 47: 335–341.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Hainaut.

Additional information

Links: IARC TP53 database, http://www-p53.iarc.fr/; OMIM TP53, no. 191170; OMIM LFS, no. 151623.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petitjean, A., Achatz, M., Borresen-Dale, A. et al. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007). https://doi.org/10.1038/sj.onc.1210302

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210302

Keywords

This article is cited by

Search

Quick links