Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Colorectal cancer and genetic alterations in the Wnt pathway

Abstract

In colorectal tumours, Wnt pathway genetics continues to be dominated by mutations in the adenomatous polyposis coli (APC) gene. Germline mutations cause familial adenomatous polyposis and at least two-thirds of sporadic colorectal tumours also acquire APC mutations, quite possibly as the initiating events in tumorigenesis. These mutations almost always cause loss of the C-terminal functions of the APC protein – probably involved in microtubule binding, cell polarity and chromosome segregation – and deletion of the SAMP repeats that are important for binding to axin and formation of the beta-catenin phosphorylation complex. The truncated APC proteins are, in general, stable and almost certainly retain some activity in beta-catenin binding. The ‘two hits’ at APC are coselected so as to produce an optimal activation of Wnt signalling (just-right hypothesis). In a minority of colorectal tumours, Wnt activation can occur through mutations that affect phosphorylation sites within exon 3 of beta-catenin, causing protein stabilization. In other tumours, epigenetic transcriptional silencing or mutation of the secreted frizzled-related proteins may modulate Wnt levels. Mutations in the Wnt components AXIN1, AXIN2 and TCF4 have been found in microsatellite-unstable colon cancers, but it is not clear in every case whether these changes are functional. Therapeutic modulation of the Wnt pathway remains an attractive therapeutic possibility for colorectal carcinomas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aguilera O, Fraga MF, Ballestar E, Paz MF, Herranz M, Espada J et al. (2006). Epigenetic inactivation of the Wnt antagonist DICKKOPF-1 (DKK-1) gene in human colorectal cancer. Oncogene 25: 4116–4121.

    Article  CAS  Google Scholar 

  • Al-Tassan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT et al. (2002). Inherited variants of MYH associated with somatic G:C → T:A mutations in colorectal tumors. Nat Genet 30: 227–232.

    Article  CAS  Google Scholar 

  • Alazzouzi H, Davalos V, Kokko A, Domingo E, Woerner SM, Wilson AJ et al. (2005). Mechanisms of inactivation of the receptor tyrosine kinase EPHB2 in colorectal tumors. Cancer Res 65: 10170–10173.

    Article  CAS  Google Scholar 

  • Albuquerque C, Breukel C, van der Luijt R, Fidalgo P, Lage P, Slors FJ et al. (2002). The ‘just-right’ signaling model: APC somatic mutations are selected based on a specific level of activation of the beta-catenin signaling cascade. Hum Mol Genet 11: 1549–1560.

    Article  CAS  Google Scholar 

  • Batra S, Shi Y, Kuchenbecker KM, He B, Reguart N, Mikami I et al. (2006). Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem Biophys Res Commun 342: 1228–1232.

    Article  CAS  Google Scholar 

  • Caldwell GM, Jones C, Gensberg K, Jan S, Hardy RG, Byrd P et al. (2004). The Wnt antagonist sFRP1 in colorectal tumorigenesis. Cancer Res 64: 883–888.

    Article  CAS  Google Scholar 

  • Crabtree M, Sieber OM, Lipton L, Hodgson SV, Lamlum H, Thomas HJ et al. (2003). Refining the relation between ‘first hits’ and ‘second hits’ at the APC locus: the ‘loose fit’ model and evidence for differences in somatic mutation spectra among patients. Oncogene 22: 4257–4265.

    Article  CAS  Google Scholar 

  • Crabtree MD, Tomlinson IP, Hodgson SV, Neale K, Phillips RK, Houlston RS . (2002). Explaining variation in familial adenomatous polyposis: relationship between genotype and phenotype and evidence for modifier genes. Gut 51: 420–423.

    Article  CAS  Google Scholar 

  • Crabtree MD, Tomlinson IP, Talbot IC, Phillips RK . (2001). Variability in the severity of colonic disease in familial adenomatous polyposis results from differences in tumour initiation rather than progression and depends relatively little on patient age. Gut 49: 540–543.

    Article  CAS  Google Scholar 

  • Dihlmann S, Gebert J, Siermann A, Herfarth C, von Knebel Doeberitz M . (1999). Dominant negative effect of the APC1309 mutation: a possible explanation for genotype–phenotype correlations in familial adenomatous polyposis. Cancer Res 59: 1857–1860.

    CAS  PubMed  Google Scholar 

  • Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R . (2000). The human T-cell transcription factor-4 gene: structure, extensive characterization of alternative splicings, and mutational analysis in colorectal cancer cell lines. Cancer Res 60: 3872–3879.

    CAS  PubMed  Google Scholar 

  • Esteller M, Sparks A, Toyota M, Sanchez-Cespedes M, Capella G, Peinado MA et al. (2000). Analysis of adenomatous polyposis coli promoter hypermethylation in human cancer. Cancer Res 60: 4366–4371.

    CAS  PubMed  Google Scholar 

  • Fearnhead NS, Britton MP, Bodmer WF . (2001). The ABC of APC. Hum Mol Genet 10: 721–733.

    Article  CAS  Google Scholar 

  • Fearnhead NS, Wilding JL, Winney B, Tonks S, Bartlett S, Bicknell DC et al. (2004). Multiple rare variants in different genes account for multifactorial inherited susceptibility to colorectal adenomas. Proc Natl Acad Sci USA 101: 15992–15997.

    Article  CAS  Google Scholar 

  • Frayling IM, Beck NE, Ilyas M, Dove-Edwin I, Goodman P, Pack K et al. (1998). The APC variants I1307K and E1317Q are associated with colorectal tumors, but not always with a family history. Proc Natl Acad Sci USA 95: 10722–10727.

    Article  CAS  Google Scholar 

  • Galiatsatos P, Foulkes WD . (2006). Familial adenomatous polyposis. Am J Gastroenterol 101: 385–398.

    Article  Google Scholar 

  • Groves C, Lamlum H, Crabtree M, Williamson J, Taylor C, Bass S et al. (2002). Mutation cluster region, association between germline and somatic mutations and genotype–phenotype correlation in upper gastrointestinal familial adenomatous polyposis. Am J Pathol 160: 2055–2061.

    Article  CAS  Google Scholar 

  • Gryfe R, Di Nicola N, Lal G, Gallinger S, Redston M . (1999). Inherited colorectal polyposis and cancer risk of the APC I1307K polymorphism. Am J Hum Genet 64: 378–384.

    Article  CAS  Google Scholar 

  • Ilyas M, Tomlinson IP, Rowan A, Pignatelli M, Bodmer WF . (1997). Beta-catenin mutations in cell lines established from human colorectal cancers. Proc Natl Acad Sci USA 94: 10330–10334.

    Article  CAS  Google Scholar 

  • Johnson V, Volikos E, Halford SE, Eftekhar Sadat ET, Popat S, Talbot I et al. (2005). Exon 3 beta-catenin mutations are specifically associated with colorectal carcinomas in hereditary non-polyposis colorectal cancer syndrome. Gut 54: 264–267.

    Article  CAS  Google Scholar 

  • Knudsen AL, Bisgaard ML, Bulow S . (2003). Attenuated familial adenomatous polyposis (AFAP). A review of the literature. Fam Cancer 2: 43–55.

    Article  Google Scholar 

  • Laken SJ, Petersen GM, Gruber SB, Oddoux C, Ostrer H, Giardiello FM et al. (1997). Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17: 79–83.

    Article  CAS  Google Scholar 

  • Lamlum H, Ilyas M, Rowan A, Clark S, Johnson V, Bell J et al. (1999). The type of somatic mutation at APC in familial adenomatous polyposis is determined by the site of the germline mutation: a new facet to Knudson's ‘two-hit’ hypothesis. Nat Med 5: 1071–1075.

    Article  CAS  Google Scholar 

  • Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I et al. (2004). Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet 74: 1043–1050.

    Article  CAS  Google Scholar 

  • Laurent-Puig P, Beroud C, Soussi T . (1998). APC gene: database of germline and somatic mutations in human tumors and cell lines. Nucleic Acids Res 26: 269–270.

    Article  CAS  Google Scholar 

  • Li J, Mizukami Y, Zhang X, Jo WS, Chung DC . (2005). Oncogenic K-ras stimulates Wnt signaling in colon cancer through inhibition of GSK-3beta. Gastroenterology 128: 1907–1918.

    Article  CAS  Google Scholar 

  • Liu W, Dong X, Mai M, Seelan RS, Taniguchi K, Krishnadath KK et al. (2000). Mutations in AXIN2 cause colorectal cancer with defective mismatch repair by activating beta-catenin/TCF signalling. Nat Genet 26: 146–147.

    Article  CAS  Google Scholar 

  • Miyoshi Y, Nagase H, Ando H, Horii A, Ichii S, Nakatsuru S et al. (1992). Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet 1: 229–233.

    Article  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  Google Scholar 

  • Nugent KP, Phillips RK, Hodgson SV, Cottrell S, Smith-Ravin J, Pack K et al. (1994). Phenotypic expression in familial adenomatous polyposis: partial prediction by mutation analysis. Gut 35: 1622–1623.

    Article  CAS  Google Scholar 

  • Rubinfeld B, Albert I, Porfiri E, Munemitsu S, Polakis P . (1997). Loss of beta-catenin regulation by the APC tumor suppressor protein correlates with loss of structure due to common somatic mutations of the gene. Cancer Res 57: 4624–4630.

    CAS  PubMed  Google Scholar 

  • Schneikert J, Behrens J . (2006). Truncated APC is required for cell proliferation and DNA replication. Int J Cancer 119: 74–79.

    Article  CAS  Google Scholar 

  • Shimizu Y, Ikeda S, Fujimori M, Kodama S, Nakahara M, Okajima M et al. (2002). Frequent alterations in the Wnt signaling pathway in colorectal cancer with microsatellite instability. Genes Chromosomes Cancer 33: 73–81.

    Article  CAS  Google Scholar 

  • Sieber O, Lipton L, Heinimann K, Tomlinson I . (2003). Colorectal tumourigenesis in carriers of the APC I1307K variant: lone gunman or conspiracy? J Pathol 199: 137–139.

    Article  CAS  Google Scholar 

  • Sieber O, Segditsas S, Knudsen A, Zhang J, Luz J, Rowan A et al. (2006). Disease severity and genetic pathways in attenuated familial adenomatous polyposis vary greatly, but depend on the site of the germline mutation. Gut 55: 1440–1448.

    Article  CAS  Google Scholar 

  • Sieber OM, Lamlum H, Crabtree MD, Rowan AJ, Barclay E, Lipton L et al. (2002). Whole-gene APC deletions cause classical familial adenomatous polyposis, but not attenuated polyposis or ‘multiple’ colorectal adenomas. Proc Natl Acad Sci USA 99: 2954–2958.

    Article  CAS  Google Scholar 

  • Slattery ML, Samowitz W, Ballard L, Schaffer D, Leppert M, Potter JD . (2001). A molecular variant of the APC gene at codon 1822: its association with diet, lifestyle, and risk of colon cancer. Cancer Res 61: 1000–1004.

    CAS  PubMed  Google Scholar 

  • Smits R, Kielman MF, Breukel C, Zurcher C, Neufeld K, Jagmohan-Changur S et al. (1999). Apc1638T: a mouse model delineating critical domains of the adenomatous polyposis coli protein involved in tumorigenesis and development. Genes Dev 13: 1309–1321.

    Article  CAS  Google Scholar 

  • Spirio L, Olschwang S, Groden J, Robertson M, Samowitz W, Joslyn G et al. (1993). Alleles of the APC gene: an attenuated form of familial polyposis. Cell 75: 951–957.

    Article  CAS  Google Scholar 

  • Spirio LN, Samowitz W, Robertson J, Robertson M, Burt RW, Leppert M et al. (1998). Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nat Genet 20: 385–388.

    Article  CAS  Google Scholar 

  • Sturt NJ, Gallagher MC, Bassett P, Philp CR, Neale KF, Tomlinson IP et al. (2004). Evidence for genetic predisposition to desmoid tumours in familial adenomatous polyposis independent of the germline APC mutation. Gut 53: 1832–1836.

    Article  CAS  Google Scholar 

  • Su LK, Barnes CJ, Yao W, Qi Y, Lynch PM, Steinbach G . (2000). Inactivation of germline mutant APC alleles by attenuated somatic mutations: a molecular genetic mechanism for attenuated familial adenomatous polyposis. Am J Hum Genet 67: 582–590.

    Article  CAS  Google Scholar 

  • Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD et al. (2004). Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet 36: 417–422.

    Article  CAS  Google Scholar 

  • Webster MT, Rozycka M, Sara E, Davis E, Smalley M, Young N et al. (2000). Sequence variants of the axin gene in breast, colon, and other cancers: an analysis of mutations that interfere with GSK3 binding. Genes Chromosomes Cancer 28: 443–453.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Tomlinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segditsas, S., Tomlinson, I. Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25, 7531–7537 (2006). https://doi.org/10.1038/sj.onc.1210059

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210059

Keywords

This article is cited by

Search

Quick links