Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer

Abstract

We had previously defined by allele loss studies a minimal region at 6q27 (between D6S264 and D6S297) to contain a putative tumour suppressor gene. The p90 ribosomal S6 kinase-3 gene (p90 Rsk-3, RPS6KA2) maps in this interval. It is a serine–threonine kinase that signals downstream of the mitogen-activated protein kinase pathway. It is expressed in normal ovarian epithelium, whereas reduced or absent in tumours or cell lines. We show that RPS6KA2 is monoallelically expressed in the ovary suggesting that loss of a single expressed allele is sufficient to cause complete loss of expression in cancer cells. Further, we have identified two new isoforms of RPS6KA2 with an alternative start codon. Homozygous deletions were identified within the RPS6KA2 gene in two cell lines. Re-expression of RPS6KA2 in ovarian cancer cell lines suppressed colony formation. In UCI101 cells, the expression of RPS6KA2 reduced proliferation, caused G1 arrest, increased apoptosis, reduced levels of phosphorylated extracellular signal-regulated kinase and altered other cell cycle proteins. In contrast, small interfering RNA against RPS6KA2 showed the opposite effect in 41M cells. The above results suggest that RPS6KA2 is a putative tumour suppressor gene to explain allele loss at 6q27.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abdollahi A, Pisarcik D, Roberts D, Weinstein J, Cairns P, Hamilton TC . (2003). LOT1 (PLAG1/ZAC1), the candidate tumor suppressor gene at chromosome 6q24–25, is epigenetically regulated in cancer. J Biol Chem 278: 6041–6049.

    Article  CAS  Google Scholar 

  • Acquati F, Morelli C, Cinquetti R, Bianchi MG, Porrini D, Varesco L et al. (2001). Cloning and characterisation of a senescence inducing and class II tumour suppressor gene in ovarian carcinoma at chromosome region 6q27. Oncogene 20: 980–988.

    Article  CAS  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al. (2004). A large-scale RNAi screen in human cells identifies new components of the P53 pathway. Nature 428: 431–437.

    Article  CAS  Google Scholar 

  • Bjorbaek C, Zhao Y, Moller DE . (1995). Divergent functional roles for P90rsk kinase domains. J Biol Chem 270: 18848–18852.

    Article  CAS  Google Scholar 

  • Bothos J, Tuttle RL, Ottey M, Luca FC, Halazonetis TD . (2005). Human lats1 is a mitotic exit network kinase. Cancer Res 65: 6568–6575.

    Article  CAS  Google Scholar 

  • Bruning JC, Gillette JA, Zhao Y, Bjorbaeck C, Kotzka J, Knebel B et al. (2000). Ribosomal subunit kinase-2 is required for growth factor-stimulated transcription of the c-Fos gene. Proc Natl Acad Sci USA 97: 2462–2467.

    Article  CAS  Google Scholar 

  • Chen W, Cooper TK, Zahnow CA, Overholtzer M, Zhao Z, Ladanyi M et al. (2004). Epigenetic and genetic loss of HIC1 function accentuates the role of P53 in tumorigenesis. Cancer Cell 6: 387–398.

    Article  CAS  Google Scholar 

  • Chenevix-Trench G, Kerr J, Hurst T, Shih YC, Purdie D, Bergman L et al. (1997). Analysis of loss of heterozygosity and KRAS2 mutations in ovarian neoplasms: clinicopathological correlations. Genes Chromosomes Cancer 18: 75–83.

    Article  CAS  Google Scholar 

  • Conover CA, Hartmann LC, Bradley S, Stalboerger P, Klee GG, Kalli KR et al. (1998). Biological characterization of human epithelial ovarian carcinoma cells in primary culture: the insulin-like growth factor system. Exp Cell Res 238: 439–449.

    Article  CAS  Google Scholar 

  • Cooke IE, Cox SA, Shelling AN, Le Meuth VG, Spurr NK, Ganesan TS . (1996a). An integrated genetic map of chromosome 6. Mamm Genome 7: 157–159.

    Article  CAS  Google Scholar 

  • Cooke IE, Shelling AN, Le Meuth VG, Charnock ML, Ganesan TS . (1996b). Allele loss on chromosome arm 6q and fine mapping of the region at 6q27 in epithelial ovarian cancer. Genes Chromosomes Cancer 15: 223–233.

    Article  CAS  Google Scholar 

  • Cox C, Bignell G, Greenman C, Stabenau A, Warren W, Stephens P et al. (2005). A survey of homozygous deletions in human cancer genomes. Proc Natl Acad Sci USA 102: 4542–4547.

    Article  CAS  Google Scholar 

  • Douville E, Downward J . (1997). EGF induced Sos phosphorylation in PC12 cells involves P90 Rsk-2. Oncogene 15: 373–383.

    Article  CAS  Google Scholar 

  • Dufresne SD, Bjorbaek C, El-Haschimi K, Zhao Y, Aschenbach WG, Moller DE et al. (2001). Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from P90 ribosomal S6 kinase 2 knockout mice. Mol Cell Biol 21: 81–87.

    Article  CAS  Google Scholar 

  • Dummler BA, Hauge C, Silber J, Yntema HG, Kruse LS, Kofoed B et al. (2005). Functional characterization of human Rsk4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J Biol Chem 280: 13304–13314.

    Article  Google Scholar 

  • Esteller M . (2002). CpG Island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene 21: 5427–5440.

    Article  CAS  Google Scholar 

  • Feinberg AP, Tycko B . (2004). The history of cancer epigenetics. Nat Rev Cancer 4: 143–153.

    Article  CAS  Google Scholar 

  • Frodin M, Gammeltoft S . (1999). Role and regulation of 90 kDa ribosomal S6 kinase (Rsk) in signal transduction. Mol Cell Endocrinol 151: 65–77.

    Article  CAS  Google Scholar 

  • Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW et al. (1992). A Genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89: 1827–1831.

    Article  CAS  Google Scholar 

  • Fuchtner C, Emma DA, Manetta A, Gamboa G, Bernstein R, Liao SY . (1993). Characterization of a human ovarian carcinoma cell line: UCI 101. Gynecol Oncol 48: 203–209.

    Article  CAS  Google Scholar 

  • Goldmit M, Bergman Y . (2004). Monoallelic gene expression: a repertoire of recurrent themes. Immunol Rev 200: 197–214.

    Article  CAS  Google Scholar 

  • Horgan AM, Stork PJ . (2003). Examining the mechanism of Erk nuclear translocation using green fluorescent protein. Exp Cell Res 285: 208–220.

    Article  CAS  Google Scholar 

  • Jirtle RL . (1999). Genomic imprinting and cancer. Exp Cell Res 248: 18–24.

    Article  CAS  Google Scholar 

  • Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH . (1993). The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet 5: 74–78.

    Article  CAS  Google Scholar 

  • Kawada M, Yamagoe S, Murakami Y, Suzuki K, Mizuno S, Uehara Y . (1997). Induction of P27kip1 degradation and anchorage independence by Ras through the map kinase signaling pathway. Oncogene 15: 629–637.

    Article  CAS  Google Scholar 

  • Laemmli UK . (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  • Laval S, Butler R, Shelling AN, Hanby AM, Poulsom R, Ganesan TS . (1994). Isolation and characterization of an epithelial-specific receptor tyrosine kinase from an ovarian cancer cell line. Cell Growth Differ 5: 1173–1183.

    CAS  PubMed  Google Scholar 

  • Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J . (1996). Cyclin D1 expression is regulated positively by the P42/P44mapk and negatively by the P38/HOGMAPK pathway. J Biol Chem 271: 20608–20616.

    Article  CAS  Google Scholar 

  • Li LC, Dahiya R . (2002). MethPrimer: designing primers for methylation Pcrs. Bioinformatics 18: 1427–1431.

    Article  CAS  Google Scholar 

  • Lin H, Morin PJ . (2001). A novel homozygous deletion at chromosomal band 6q27 in an ovarian cancer cell line delineates the position of a putative tumor suppressor gene. Cancer Lett 173: 63–70.

    Article  CAS  Google Scholar 

  • Liu Y, Dodds P, Emilion G, Mungall AJ, Dunham I, Beck S et al. (2002a). The human homologue of unc-93 maps to chromosome 6q27 – characterisation and analysis in sporadic epithelial ovarian cancer. BMC Genet 3: 20.

    Article  Google Scholar 

  • Liu Y, Emilion G, Mungall AJ, Dunham I, Beck S, Le Meuth-Metzinger VG et al. (2002b). Physical and transcript map of the region between D6S264 and D6S149 on chromosome 6q27, the minimal region of allele loss in sporadic epithelial ovarian cancer. Oncogene 21: 387–399.

    Article  CAS  Google Scholar 

  • Liu Y, Ganesan TS . (2002). Tumour suppressor genes in sporadic epithelial ovarian cancer. Reproduction 123: 341–353.

    Article  CAS  Google Scholar 

  • Lo HS, Wang Z, Hu Y, Yang HH, Gere S, Buetow KH et al. (2003). Allelic variation in gene expression is common in the human genome. Genome Res 13: 1855–1862.

    Article  CAS  Google Scholar 

  • Luedi PP, Hartemink AJ, Jirtle RL . (2005). Genome-wide prediction of imprinted murine genes. Genome Res 15: 875–884.

    Article  CAS  Google Scholar 

  • Modesitt SC, Ramirez P, Zu Z, Bodurka-Bevers D, Gershenson D, Wolf JK . (2001). In vitro and in vivo adenovirus-mediated P53 and P16 tumor suppressor therapy in ovarian cancer. Clin Cancer Res 7: 1765–1772.

    CAS  PubMed  Google Scholar 

  • Moller DE, Xia CH, Tang W, Zhu AX, Jakubowski M . (1994). Human rsk isoforms: cloning and characterization of tissue-specific expression. Am J Physiol 266: C351–C359.

    Article  CAS  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG . (2005). A census of mammalian imprinting. Trends Genet 21: 457–465.

    Article  CAS  Google Scholar 

  • Myers AP, Corson LB, Rossant J, Baker JC . (2004). Characterization of mouse Rsk4 as an inhibitor of fibroblast growth factor-Ras-extracellular signal-regulated kinase signaling. Mol Cell Biol 24: 4255–4266.

    Article  CAS  Google Scholar 

  • Nikaido I, Saito C, Mizuno Y, Meguro M, Bono H, Kadomura M et al. (2003). Discovery of imprinted transcripts in the mouse transcriptome using large-scale expression profiling. Genome Res 13: 1402–1409.

    Article  CAS  Google Scholar 

  • Ohlsson R, Tycko B, Sapienza C . (1998). Monoallelic expression: ‘there can only be one’. Trends Genet 14: 435–438.

    Article  CAS  Google Scholar 

  • Ohtani N, Yamakoshi K, Takahashi A, Hara E . (2004). The P16ink4a-Rb pathway: molecular link between cellular senescence and tumor suppression. J Med Invest 51: 146–153.

    Article  Google Scholar 

  • Pfaffl MW . (2001). A new mathematical model for relative quantification in real-time Rt-Pcr. Nucleic Acids Res 29: e45.

    Article  CAS  Google Scholar 

  • Pineau P, Marchio A, Cordina E, Tiollais P, Dejean A . (2003). Homozygous deletions scanning in tumor cell lines detects previously unsuspected loci. Int J Cancer 106: 216–223.

    Article  CAS  Google Scholar 

  • Reik W, Lewis A . (2005). Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat Rev Genet 6: 403–410.

    Article  CAS  Google Scholar 

  • Rougeulle C, Glatt H, Lalande M . (1997). The angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 17: 14–15.

    Article  CAS  Google Scholar 

  • Saito S, Saito H, Koi S, Sagae S, Kudo R, Saito J et al. (1992). Fine-scale deletion mapping of the distal long arm of chromosome 6 in 70 human ovarian cancers. Cancer Res 52: 5815–5817.

    CAS  PubMed  Google Scholar 

  • Sano Y, Shimada T, Nakashima H, Nicholson RH, Eliason JF, Kocarek TA et al. (2001). Random monoallelic expression of three genes clustered within 60 kb of mouse T complex genomic DNA. Genome Res 11: 1833–1841.

    Article  CAS  Google Scholar 

  • Schinelli S, Zanassi P, Paolillo M, Wang H, Feliciello A, Gallo V . (2001). Stimulation of endothelin B receptors in astrocytes induces camp response element-binding protein phosphorylation and c-Fos expression via multiple mitogen-activated protein kinase signaling pathways. J Neurosci 21: 8842–8853.

    Article  CAS  Google Scholar 

  • Schreiber M, Muller WJ, Singh G, Graham FL . (1999). Comparison of the effectiveness of adenovirus vectors expressing cyclin kinase inhibitors P16ink4a, P18ink4c, P19ink4d, P21(Waf1/Cip1) and P27kip1 in inducing cell cycle arrest, apoptosis and inhibition of tumorigenicity. Oncogene 18: 1663–1676.

    Article  CAS  Google Scholar 

  • Shelling AN, Cooke IE, Ganesan TS . (1995). The genetic analysis of ovarian cancer. Br. J. Cancer. 72: 521–527.

    Article  CAS  Google Scholar 

  • Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T et al. (2002). Large-scale analysis of the human and mouse transcriptomes. Proc Natl Acad Sci USA 99: 4465–4470.

    Article  CAS  Google Scholar 

  • Suzuki Y, Yamashita R, Sugano S, Nakai K . (2004). DBTSS, DataBase of Transcriptional Start Sites: progress report 2004. Nucleic Acids Res 32: D78–D81.

    Article  CAS  Google Scholar 

  • Teng DH, Perry III WL, Hogan JK, Baumgard M, Bell R, Berry S et al. (1997). Human mitogen-activated protein kinase kinase 4 as a candidate tumor suppressor. Cancer Res 57: 4177–4182.

    CAS  PubMed  Google Scholar 

  • Tibiletti MG, Bernasconi B, Furlan D, Riva C, Trubia M, Buraggi G et al. (1996). Early involvement of 6q in surface epithelial ovarian tumors. Cancer Res 56: 4493–4498.

    CAS  PubMed  Google Scholar 

  • Tibiletti MG, Sessa F, Bernasconi B, Cerutti R, Broggi B, Furlan D et al. (2000). A large 6q deletion is a common cytogenetic alteration in fibroadenomas, pre-malignant lesions, and carcinomas of the breast. Clin Cancer Res 6: 1422–1431.

    CAS  PubMed  Google Scholar 

  • Tibiletti MG, Trubia M, Ponti E, Sessa L, Acquati F, Furlan D et al. (1998). Physical map of the D6S149-D6S193 region on chromosome 6q27 and its involvement in benign surface epithelial ovarian tumours. Oncogene 16: 1639–1642.

    Article  CAS  Google Scholar 

  • Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I et al. (1996). Mutations in the kinase Rsk-2 associated with Coffin–Lowry syndrome. Nature 384: 567–570.

    Article  CAS  Google Scholar 

  • Trubia M, Sessa L, Taramelli R . (1997). Mammalian Rh/T2/S-glycoprotein ribonuclease family genes: cloning of a human member located in a region of chromosome 6 (6q27) frequently deleted in human malignancies. Genomics 42: 342–344.

    Article  CAS  Google Scholar 

  • Tsao SW, Mok SC, Fey EG, Fletcher JA, Wan TS, Chew EC et al. (1995). Characterization of human ovarian surface epithelial cells immortalized by human papilloma viral oncogenes (Hpv-E6e7 Orfs). Exp Cell Res 218: 499–507.

    Article  CAS  Google Scholar 

  • Wales MM, Biel MA, el Deiry W, Nelkin BD, Issa JP, Cavenee WK et al. (1995). P53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3. Nat Med 1: 570–577.

    Article  CAS  Google Scholar 

  • Wilkinson MG, Millar JB . (2000). Control of the eukaryotic cell cycle by map kinase signaling pathways. FASEB J 14: 2147–2157.

    Article  CAS  Google Scholar 

  • Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M . (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by P21cip1. Mol Cell Biol 17: 5598–5611.

    Article  CAS  Google Scholar 

  • Xing J, Kornhauser JM, Xia Z, Thiele EA, Greenberg ME . (1998). Nerve growth factor activates extracellular signal-regulated kinase and P38 mitogen-activated protein kinase pathways to stimulate CREB serine 133 phosphorylation. Mol Cell Biol 18: 1946–1955.

    Article  CAS  Google Scholar 

  • Yntema HG, van den Helm B, Kissing J, van Duijnhoven G, Poppelaars F, Chelly J et al. (1999). A novel ribosomal S6-kinase (Rsk4; Rps6ka6) is commonly deleted in patients with complex X-linked mental retardation. Genomics 62: 332–343.

    Article  CAS  Google Scholar 

  • Yoo LI, Chung DC, Yuan J . (2002). LKB1 – a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer 2: 529–535.

    Article  CAS  Google Scholar 

  • Yu Y, Xu F, Peng H, Fang X, Zhao S, Li Y et al. (1999). NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA 96: 214–219.

    Article  CAS  Google Scholar 

  • Zeniou M, Ding T, Trivier E, Hanauer A . (2002). Expression analysis of Rsk gene family members: the Rsk2 gene, mutated in Coffin–Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum Mol Genet 11: 2929–2940.

    Article  CAS  Google Scholar 

  • Zhao Y, Bjorbaek C, Weremowicz S, Morton CC, Moller DE . (1995). Rsk3 encodes a novel Pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol Cell Biol 15: 4353–4363.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Iain Goldsmith is acknowledged for synthesis of oligonucleotides, Mr Reginald Boone, Dr Anna Richardson and Kevin Clark for assistance with sequencing. Dr S Manek reviewed the pathology and some tumour specimens were obtained from Mr I Mackenzie and Mr M Gillmer. The sequence analysis of PAC/BAC was performed with the assistance of Dr Brooksbank. We thank all members of the chromosome 6 project group at the Sanger Centre. We also thank all the past and present members of the Ovarian Cancer Group for their generous and unique assistance. The work described in this paper is supported by the Cancer Research UK, Association of International Cancer Research, Wellbeing and Human mapping/sequencing at the Sanger Centre is funded by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T S Ganesan.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bignone, P., Lee, K., Liu, Y. et al. RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer. Oncogene 26, 683–700 (2007). https://doi.org/10.1038/sj.onc.1209827

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209827

Keywords

This article is cited by

Search

Quick links