Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism

Abstract

Environmental chemicals such as dioxin adversely affect immune, neurological and reproductive functions and have been implicated in cancer development. However, the mechanisms responsible for dioxin toxicity are still poorly understood. Here, we show that dioxin and related pollutants trigger a marked morphological change in epithelial cells that remodel their cytoskeleton to increase interaction with extra cellular matrix while loosening cell–cell contacts. Furthermore, dioxin-treated cells show increased motility. These dioxin-mediated effects are mimicked by constitutive expression and activation of the intracellular dioxin receptor (aryl hydrocarbon receptor (AhR)). They correlate with activation of the Jun NH2-terminal kinase (JNK) and are reverted by treatment with a JNK inhibitor. Dioxin-induced effects occur 48 h post-treatment initiation, a time scale, which argues for a genomic effect of the AhR, linked to induction of target genes. This novel Ahr action on cell plasticity points to a role in cancer progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Baccarelli A, Mocarelli P, Patterson Jr DG, Bonzini M, Pesatori AC, Caporaso N et al. (2002). Environ Health Perspect 110: 1169–1173.

  • Coumoul X, Diry M, Robillot C, Barouki R . (2001). Cancer Res 61: 3942–3948.

  • Denison MS, Nagy SR . (2003). Annu Rev Pharmacol Toxicol 43: 309–334.

  • Evers EE, Zondag GC, Malliri A, Price LS, ten Klooster JP, van der Kammen RA et al. (2000). Eur J Cancer 36: 1269–1274.

  • Fashena SJ, Einarson MB, O’Neill GM, Patriotis C, Golemis EA . (2002). J Cell Sci 115: 99–111.

  • Fernandez-Salguero P, Pineau T, Hilbert DM, McPhail T, Lee SS, Kimura S et al. (1995). Science 268: 722–726.

  • Foekens JA, Peters HA, Look MP, Portengen H, Schmitt M, Kramer MD et al. (2000). Cancer Res 60: 636–643.

  • Frueh FW, Hayashibara KC, Brown PO, Whitlock Jr JP . (2001). Toxicol Lett 122: 189–203.

  • Gotzmann J, Mikula M, Eger A, Schulte-Hermann R, Foisner R, Beug H et al. (2004). Mutat Res 566: 9–20.

  • Huang X, Powell-Coffman JA, Jin Y . (2004). Development 131: 819–828.

  • Kohle C, Hassepass I, Bock-Hennig BS, Walter Bock K, Poellinger L, McGuire J . (2002). Arch Biochem Biophys 402: 172–179.

  • Law SF, O’Neill GM, Fashena SJ, Einarson MB, Golemis EA . (2000). Mol Cell Biol 20: 5184–5195.

  • Marchand A, Tomkiewicz C, Marchandeau JP, Boitier E, Barouki R, Garlatti M . (2005). Mol Pharmacol 67: 444–452.

  • Mulero-Navarro S, Pozo-Guisado E, Perez-Mancera PA, Alvarez-Barrientos A, Catalina-Fernandez I, Hernandez-Nieto E et al. (2005). J Biol Chem 280: 28731–28741.

  • Nesaretnam K, Hales E, Sohail M, Krausz T, Darbre P . (1998). Eur J Cancer 34: 389–393.

  • Nimnual AS, Yatsula BA, Bar-Sagi D . (1998). Science 279: 560–563.

  • O’Neill GM, Fashena SJ, Golemis EA . (2000). Trends Cell Biol 10: 111–119.

  • Pastor-Pareja JC, Grawe F, Martin-Blanco E, Garcia-Bellido A . (2004). Dev Cell 7: 387–399.

  • Pelclova D, Fenclova Z, Dlaskova Z, Urban P, Lukas E, Prochazka B et al. (2001). Arch Environ Health 56: 493–500.

  • Pesatori AC, Consonni D, Bachetti S, Zocchetti C, Bonzini M, Baccarelli A et al. (2003). Ind Health 41: 127–138.

  • Poellinger L . (2000). Food Addit Contam 17: 261–266.

  • Puga A, Maier A, Medvedovic M . (2000). Biochem Pharmacol 60: 1129–1142.

  • Qin H, Powell-Coffman JA . (2004). Dev Biol 270: 64–75.

  • Safe S, Wormke M . (2003). Chem Res Toxicol 16: 807–816.

  • Seger R, Krebs EG . (1995). Faseb J 9: 726–735.

  • Sisci D, Aquila S, Middea E, Gentile M, Maggiolini M, Mastroianni F et al. (2004). Oncogene 23: 8920–8930.

  • Tan Z, Chang X, Puga A, Xia Y . (2002). Biochem Pharmacol 64: 771–780.

  • Weiss C, Faust D, Durk H, Kolluri SK, Pelzer A, Schneider S et al. (2005). Oncogene 24: 4975–4983.

  • Xia Y, Karin M . (2004). Trends Cell Biol 14: 94–101.

  • Yamamoto O, Tokura Y . (2003). J Dermatol Sci 32: 85–94.

  • Zavadil J, Bottinger EP . (2005). Oncogene 24: 5764–5774.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Transy.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diry, M., Tomkiewicz, C., Koehle, C. et al. Activation of the dioxin/aryl hydrocarbon receptor (AhR) modulates cell plasticity through a JNK-dependent mechanism. Oncogene 25, 5570–5574 (2006). https://doi.org/10.1038/sj.onc.1209553

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209553

Keywords

This article is cited by

Search

Quick links