Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion

Abstract

Members of the Rho family of small GTPases have been shown to be involved in tumorigenesis and metastasis. Currently, most of the available information on the function of Rho proteins in malignant transformation is based on the use of dominant-negative mutants of these GTPases. The specificity of these dominant-negative mutants is limited however. In this study, we used small interfering RNA directed against either Rac1 or Rac3 to reduce their expression specifically. In line with observations using dominant-negative Rac1 in other cell types, we show that RNA interference-mediated depletion of Rac1 strongly inhibits lamellipodia formation, cell migration and invasion in SNB19 glioblastoma cells. Surprisingly however, Rac1 depletion has a much smaller inhibitory effect on SNB19 cell proliferation and survival. Interestingly, whereas depletion of Rac3 strongly inhibits SNB19 cell invasion, it does not affect lamellipodia formation and has only minor effects on cell migration and proliferation. Similar results were obtained in BT549 breast carcinoma cells. Thus, functional analysis of Rac1 and Rac3 using RNA interference reveals a critical role for these GTPases in the invasive behavior of glioma and breast carcinoma cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Allen WE, Zicha D, Ridley AJ and Jones GE . (1998). J. Cell. Biol., 141, 1147–1157.

  • Anand-Apte B, Zetter BR, Viswanathan A, Qiu RG, Chen J, Ruggieri R and Symons M . (1997). J. Biol. Chem., 272, 30688–30692.

  • Bokoch GM . (2003). Annu. Rev. Biochem., 72, 743–781.

  • Bouzahzah B, Albanese C, Ahmed F, Pixley F, Lisanti MP, Segall JD, Condeelis J, Joyce D, Minden A, Der CJ, Chan A, Symons M and Pestell RG . (2001). Mol. Med., 7, 816–830.

  • Burridge K and Wennerberg K . (2004). Cell, 116, 167–179.

  • Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME and Symons M . (2004). Cancer Res., 64, 8271–8275.

  • Coniglio SJ, Jou TS and Symons M . (2001). J. Biol. Chem., 276, 28113–28120.

  • Debreceni B, Gao Y, Guo F, Zhu K, Jia B and Zheng Y . (2004). J. Biol. Chem., 279, 3777–3786.

  • Denli AM and Hannon GJ . (2003). Trends Biochem. Sci., 28, 196–201.

  • Dykxhoorn DM, Novina CD and Sharp PA . (2003). Nat. Rev. Mol. Cell. Biol., 4, 457–467.

  • Eden S, Rohatgi R, Podtelejnikov AV, Mann M and Kirschner MW . (2002). Nature, 418, 790–793.

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T . (2001). Nature, 411, 494–498.

  • Feig LA . (1999). Nat. Cell. Biol., 1, E25–E27.

  • Filippi MD, Harris CE, Meller J, Gu Y, Zheng Y and Williams DA . (2004). Nat. Immunol., 5, 744–751.

  • Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, Harris CE, Lee AW, Prabhakar R, Atkinson SJ, Kwiatkowski DJ and Williams DA . (2003). Science, 302, 445–449.

  • Gulli MP and Peter M . (2001). Genes Dev., 15, 365–379.

  • Haataja L, Groffen J and Heisterkamp N . (1997). J. Biol. Chem., 272, 20384–20388.

  • Haataja L, Kaartinen V, Groffen J and Heisterkamp N . (2002). J. Biol. Chem., 277, 8321–8328.

  • Jackson AL, Bartz SR, Schelter J, Kobayashi SV, Burchard J, Mao M, Li B, Cavet G and Linsley PS . (2003). Nat. Biotechnol., 21, 635–637.

  • Joneson T, White MA, Wigler MH and Bar-Sagi D . (1996). Science, 271, 810–812.

  • Joyce PL and Cox AD . (2003). Cancer Res., 63, 7959–7967.

  • Karnoub AE, Worthylake DK, Rossman KL, Pruitt WM, Campbell SL, Sondek J and Der CJ . (2001). Nat. Struct. Biol., 8, 1037–1041.

  • Keely PJ, Westwick JK, Whitehead IP, Der CJ and Parise LV . (1997). Nature, 390, 632–636.

  • Kheradmand F, Werner E, Tremble P, Symons M and Werb Z . (1998). Science, 280, 898–902.

  • Khosravi-Far R, Solski PA, Clark GJ, Kinch MS and Der CJ . (1995). Mol. Cell. Biol., 15, 6443–6453.

  • Lin R, Bagrodia S, Cerione R and Manor D . (1997). Curr. Biol., 7, 794–797.

  • Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M and Philips MR . (2001). J. Cell. Biol., 152, 111–126.

  • Mira JP, Benard V, Groffen J, Sanders LC and Knaus UG . (2000). Proc. Natl. Acad. Sci. USA, 97, 185–189.

  • Nobes CD and Hall A . (1999). J. Cell. Biol., 144, 1235–1244.

  • O'Connor KL, Nguyen BK and Mercurio AM . (2000). J. Cell. Biol., 148, 253–258.

  • Qiu RG, Abo A, McCormick F and Symons M . (1997). Mol. Cell. Biol., 17, 3449–3458.

  • Qiu RG, Chen J, Kirn D, McCormick F and Symons M . (1995a). Nature, 374, 457–459.

  • Qiu RG, Chen J, McCormick F and Symons M . (1995b). Proc. Natl. Acad. Sci. USA, 92, 11781–11785.

  • Raftopoulou M and Hall A . (2004). Dev. Biol., 265, 23–32.

  • Repesh LA . (1989). Invasion Metastasis, 9, 192–208.

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D and Hall A . (1992). Cell, 70, 401–410.

  • Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR . (2003). Science, 302, 1704–1709.

  • Ruggieri R, Chuang YY and Symons M . (2001). Mol. Med., 7, 293–300.

  • Sahai E and Marshall CJ . (2002). Nat. Rev. Cancer, 2, 133–142.

  • Saxena S, Jonsson ZO and Dutta A . (2003). J. Biol. Chem., 278, 44312–44319.

  • Scacheri PC, Rozenblatt-Rosen O, Caplen NJ, Wolfsberg TG, Umayam L, Lee JC, Hughes CM, Shanmugam KS, Bhattacharjee A, Meyerson M and Collins FS . (2004). Proc. Natl. Acad. Sci. USA, 101, 1892–1897.

  • Senger DL, Tudan C, Guiot MC, Mazzoni IE, Molenkamp G, LeBlanc R, Antel J, Olivier A, Snipes GJ and Kaplan DR . (2002). Cancer Res., 62, 2131–2140.

  • Shaw LM, Rabinovitz I, Wang HH, Toker A and Mercurio AM . (1997). Cell, 91, 949–960.

  • Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S and Boyd MR . (1990). J. Natl. Cancer Inst., 82, 1107–1112.

  • Small JV, Stradal T, Vignal E and Rottner K . (2002). Trends Cell Biol., 12, 112–120.

  • Symons M and Settleman J . (2000). Trends Cell Biol., 10, 415–419.

  • Van Aelst L and D'Souza-Schorey C . (1997). Genes Dev., 11, 2295–2322.

  • Wells CM, Walmsley M, Ooi S, Tybulewicz V and Ridley AJ . (2004). J. Cell. Sci., 117, 1259–1268.

  • Zheng Y . (2001). Trends Biochem. Sci., 26, 724–732.

  • Zhuge Y and Xu J . (2001). J. Biol. Chem., 276, 16248–16256.

Download references

Acknowledgements

We thank Dr L Van Aelst (Cold Spring Harbor) for the pCGT Rac1-V12 plasmid and SNB19 and U87MG cells. We also like to thank N Rusk and A Valster for critical reading of the manuscript. This work was supported by National Institutes of Health Grant CA87567.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Symons.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, A., Coniglio, S., Chuang, Yy. et al. Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion. Oncogene 24, 7821–7829 (2005). https://doi.org/10.1038/sj.onc.1208909

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208909

Keywords

This article is cited by

Search

Quick links