Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1

Abstract

The matrix fibronectin protein is a multifunctional adhesive molecule that promotes migration and invasiveness of many tumors including melanomas. Increased fibronectin synthesis has been associated with the metastatic potential of melanoma cells; however, the molecular mechanisms underlying fibronectin overexpression during melanoma development are poorly understood. We report that hepatocyte growth factor/scatter factor (HGF) induces fibronectin expression and its extracellular assembly on the surface of melanoma cells through activation of mitogen-activated protein (MAP) kinase pathway, and induction and transcriptional activation of Early growth response-1 (Egr-1). Inhibition of B-RAF/MAP kinase pathway by dominant-negative mutants and by U0126-abrogated HGF-induced Egr-1, and chromatin immunoprecipitation showed that Egr-1 is bound to the fibronectin promoter in response to HGF. Exogenously expressed Egr-1 increased fibronectin levels, while blockage of Egr-1 activation by expression of the Egr-1 corepressor NAB2 interfered with the upregulation of fibronectin synthesis induced by HGF, indicating that Egr-1 exerts a significant role in fibronectin expression in response to HGF. Finally, analysis of the expression pattern of fibronectin in melanoma cells demonstrated that fibronectin levels are correlated with constitutive MAP kinase signaling. Our data define a novel mechanism that might have important implications in regulation of melanoma progression by autocrine HGF signaling or by constitutive activation of MAP kinase pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Al Moustafa AE, Alaoui-Jamali MA, Batist G, Hernandez-Perez M, Serruya C, Alpert L, Black MJ, Sladek R and Foulkes WD . (2002). Oncogene, 21, 2634–2640.

  • Bertolotto C, Abbe P, Hemesath TJ, Bille K, Fisher DE, Ortonne JP and Ballotti R . (1998). J. Cell Biol., 142, 827–835.

  • Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D and Sondak V . (2000). Nature, 406, 536–540.

  • Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R, Einhorn E, Herlyn M, Minna J, Nicholson A, Roth JA, Albelda SM, Davies H, Cox C, Brignell G, Stephens P, Futreal PA, Wooster R, Stratton MR and Weber BL . (2002). Cancer Res., 62, 6997–7000.

  • Buchwalter G, Gross C and Wasylyk B . (2004). Gene, 324, 1–14.

  • Busca R, Abbe P, Mantoux F, Aberdam E, Peyssonnaux C, Eychene A, Ortonne JP and Ballotti R . (2000). EMBO J., 19, 2900–2910.

  • Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E and Tartare-Deckert S . (2003). J. Biol. Chem., 278, 11888–11896.

  • Clark EA, Golub TR, Lander ES and Hynes RO . (2000). Nature, 406, 532–535.

  • Cohen DM, Gullans SR and Chin WW . (1996). J. Biol. Chem., 271, 12903–12908.

  • Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR and Futreal PA . (2002). Nature, 417, 949–954.

  • Ehrengruber MU, Muhlebach SG, Sohrman S, Leutenegger CM, Lester HA and Davidson N . (2000). Gene, 258, 63–69.

  • Frisch SM and Ruoslahti E . (1997). Curr. Opin. Cell Biol., 9, 701–706.

  • Fu M, Zhu X, Zhang J, Liang J, Lin Y, Zhao L, Ehrengruber MU and Chen YE . (2003). Gene, 315, 33–41.

  • Gashler A and Sukhatme VP . (1995). Prog. Nucleic Acid Res. Mol. Biol., 50, 191–224.

  • Ghosh Choudhury G and Abboud HE . (2004). Cell Signal, 16, 31–41.

  • Giancotti FG and Ruoslahti E . (1999). Science, 285, 1028–1032.

  • Goding CR . (2000). Genes Dev, 14, 1712–1728.

  • Gradl D, Kuhl M and Wedlich D . (1999). Mol. Cell. Biol., 19, 5576–5587.

  • Guo B, Koya D, Isono M, Sugimoto T, Kashiwagi A and Haneda M . (2004). Diabetes, 53, 200–208.

  • Hagemann C and Rapp UR . (1999). Exp. Cell Res., 253, 34–46.

  • Herlyn M and Satyamoorthy K . (1996). Am. J. Pathol., 149, 739–744.

  • Hingorani SR, Jacobetz MA, Robertson GP, Herlyn M and Tuveson DA . (2003). Cancer Res., 63, 5198–5202.

  • Hocevar BA, Brown TL and Howe PH . (1999). EMBO J., 18, 1345–1356.

  • Hodge C, Liao J, Stofega M, Guan K, Carter-Su C and Schwartz J . (1998). J. Biol. Chem., 273, 31327–31336.

  • Hsu MY, Meier F and Herlyn M . (2002). Differentiation, 70, 522–536.

  • Humphries MJ, Obara M, Olden K and Yamada KM . (1989). Cancer Invest., 7, 373–393.

  • Humphries MJ, Olden K and Yamada KM . (1986). Science, 233, 467–470.

  • Hynes RO and Yamada KM . (1982). J. Cell Biol., 95, 369–377.

  • Jiang Y, Harlocker SL, Molesh DA, Dillon DC, Stolk JA, Houghton RL, Repasky EA, Badaro R, Reed SG and Xu J . (2002). Oncogene, 21, 2270–2282.

  • Lee BH, Park SY, Kang KB, Park RW and Kim IS . (2002). Biochem. Biophys. Res. Commun., 297, 1218–1224.

  • Li G, Schaider H, Satyamoorthy K, Hanakawa Y, Hashimoto K and Herlyn M . (2001). Oncogene, 20, 8125–8135.

  • Liu C, Adamson E and Mercola D . (1996). Proc. Natl. Acad. Sci. USA, 93, 11831–11836.

  • Liu C, Yao J, Mercola D and Adamson E . (2000). J. Biol. Chem., 275, 20315–20323.

  • Mechtcheriakova D, Schabbauer G, Lucerna M, Clauss M, De Martin R, Binder BR and Hofer E . (2001). FASEB. J., 15, 230–242.

  • Medico E, Gambarotta G, Gentile A, Comoglio PM and Soriano P . (2001). Nat. Biotechnol., 19, 579–582.

  • Natali PG, Nicotra MR, Di Renzo MF, Prat M, Bigotti A, Cavaliere R and Comoglio PM . (1993). Br. J. Cancer, 68, 746–750.

  • Noonan FP, Otsuka T, Bang S, Anver MR and Merlino G . (2000). Cancer Res., 60, 3738–3743.

  • Peyssonnaux C and Eychene A . (2001). Biol. Cell, 93, 53–62.

  • Recio JA and Merlino G . (2003). Cancer Res., 63, 1576–1582.

  • Ridley A . (2000). Nature, 406, 466–467.

  • Ruoslahti E and Giancotti FG . (1989). Cancer Cells, 1, 119–126.

  • Russo MW, Matheny C and Milbrandt J . (1993). Mol. Cell Biol., 13, 6858–6865.

  • Sage EH . (2001). J. Clin. Invest., 107, 781–783.

  • Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE and Herlyn M . (2003). Cancer Res., 63, 756–759.

  • Silletti S, Paku S and Raz A . (1998). Int. J. Cancer, 76, 120–128.

  • Svaren J, Sevetson BR, Apel ED, Zimonjic DB, Popescu NC and Milbrandt J . (1996). Mol. Cell. Biol., 16, 3545–3553.

  • Thiel G and Cibelli G . (2002). J. Cell Physiol., 193, 287–292.

  • Trusolino L, Cavassa S, Angelini P, Ando M, Bertotti A, Comoglio PM and Boccaccio C . (2000). FASEB J., 14, 1629–1640.

  • Trusolino L and Comoglio PM . (2002). Nat. Rev. Cancer, 2, 289–300.

  • Tsai JC, Liu L, Guan J and Aird WC . (2000). Am. J. Physiol. Cell Physiol., 279, C1414–C1424.

  • Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-Duvaz D, Springer CJ and Marais R . (2004). Cancer Res., 64, 2338–2342.

  • Wu SQ, Minami T, Donovan DJ and Aird WC . (2002). Blood, 100, 4454–4461.

  • Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B and Kinzler KW . (1997). Science, 276, 1268–1272.

Download references

Acknowledgements

We are grateful to Véronique Baron and Corine Bertolotto for helpful discussions and Edith Aberdam for technical advice. We thank David Cohen, Alain Eychene, Jacques Pouysségur, Dan Mercola and Peter E Shaw for providing cDNAs, and Meenhard Herlyn for 1205Lu melanoma cell line. This work was supported by Institut National de la Santé et de la Recherche Médicale (INSERM) and the Association pour la Recherche sur le Cancer (ARC), grant no 4709. CG is a recipient of a doctoral fellowship from the Ministère de l'Enseignement Supérieur et de la Recherche (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Tartare-Deckert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaggioli, C., Deckert, M., Robert, G. et al. HGF induces fibronectin matrix synthesis in melanoma cells through MAP kinase-dependent signaling pathway and induction of Egr-1. Oncogene 24, 1423–1433 (2005). https://doi.org/10.1038/sj.onc.1208318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208318

Keywords

This article is cited by

Search

Quick links