Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells

Abstract

ESX is an epithelial-restricted member of a large family of transcription factors known as the Ets family. ESX expression has been shown to be correlated with Her2/neu proto-oncogene amplification in highly aggressive breast cancers and induced by Her2/neu in breast cell lines, but its role in tumorigenesis is unknown. Previously, we have shown that ESX enhances breast cell survival in colony-formation assays. In order to determine whether ESX can act as a transforming gene, we stably transfected MCF-12A human mammary epithelial cells with the ESX expression vector, pCGN2-HA-ESX. The MCF-12A cell line is immortalized, but nontransformed, and importantly, these cells fail to express endogenous ESX protein. We used pCGN2-HA-Ets-2 and pSVRas expression vectors as positive controls for transformation. Like HA-Ets-2 and V12-Ras, stable expression of ESX induced EGF-independent proliferation, serum-independent MAPK phosphorylation and growth in soft agar. Additionally, stable ESX expression conferred increased cell adhesion, motility and invasion in two-dimensional and transwell filter assays, and an epithelial to mesenchymal morphological transition. In three-dimensional cultures, parental and vector control (pCGN2) cells formed highly organized duct-like structures with evidence of cell polarity, ECM adhesion-dependent proliferation and cell survival, and lack of cellular invasion into surrounding matrix. Remarkably, the ESX stable cells formed solid, disorganized structures, with lack of cell polarity, loss of adhesion junctions and cytokeratin staining and loss of dependence on ECM adhesion for cell proliferation and survival. In addition, ESX cells invaded the surrounding matrix, indicative of a transformed and metastatic phenotype. Taken together, these data show that ESX expression alone confers a transformed and in vitro metastatic phenotype to otherwise normal MCF-12A cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Baert J, Monte D, Musgrove E, Albagli O, Sutherland R and Delaunoit Y . (1997). Int. J. Cancer, 70, 590–597.

  • Bar-Sagi D and Hall A . (2000). Cell, 103, 227–238.

  • Basset P, Wolf C and Chambon P . (1993). Breast Cancer Res. Treat, 24, 185–193.

  • Bemis LT and Schedin P . (2000). Cancer Res., 60, 3414–3418.

  • Benaud C, Dickson R and Thompson E . (1998). Breast Cancer Res. Treat, 50, 97–116.

  • Benz C, O'Hagan R, Richter B, Scott G, Chang C-H, Xiong X, Chew K, Ljung B-M, Edgerton S, Thor A and Hassell J . (1997). Oncogene, 15, 1513–1525.

  • Bernhardt G, Reile H, Birnbock H, Spruss T and Schoenberger H . (1992). J. Cancer Res. Clin. Oncol., 118, 35–43.

  • Blum JL, Ziegler ME and Wicha MS . (1989). Environ. Health Perspect., 80, 71–83.

  • Bonneton C, Sibarita JB and Thiery JP . (1999). Cell Motil. Cytoskeleton, 43, 288–295.

  • Boudreau N, Sympson CJ, Werb Z and Bissell MJ . (1995). Science, 267, 891–893.

  • Bradford AP, Brodsky KS, Diamond SE, Kuhn LC, Liu Y and Gutierrez-Hartmann A . (2000). J. Biol. Chem., 275, 3100–3106.

  • Chang C, Scott G, Kuo W, Xiong X, Suzdaltseva Y, Park J, Sayre P, Erny K, Collins C, Gray J and Benz C . (1997). Oncogene, 14, 1617–1622.

  • Chang C-H, Scott GK, Baldwin NA and Benz CC . (1999). Oncogene, 18, 3682–3695.

  • Coucouvanis E and Martin GR . (1995). Cell, 83, 279–287.

  • Cunha GR . (1994). Cancer, 74, 1030–1044.

  • Delannoy-Courdent A, Mattot V, Fafeur V, Fauquette W, Pollet I, Calmels T, Vercamer C, Boilly B, Vandenbunder B and Desbiens X . (1998). J. Cell Sci., 111, 1521–1534.

  • Dittmer J and Nordheim A . (1998). Bioch. Biophys. Acta, 1377, F1–F11.

  • Donaldson L, Petersen J, Graves B and McIntosh L . (1994). Biochemistry, 33, 13509–13516.

  • Donaldson L, Petersen J, Graves B and McIntosh L . (1996). EMBO J., 15, 125–134.

  • Duffy M, Maguire T, McDermott E and O'Higgins N . (1999). J. Surg. Oncol., 71, 130–135.

  • Eckel KL, Tentler JJ, Diamond SE, Cappetta GJ and Gutierrez-Hartmann A . (2003). DNA Cell Biol., 22, 79–94.

  • Falco J, Baylin S, Lupu R, Borges M, Nelkin B, Jasti R, Davidson N and Mabry M . (1990). J. Clin. Invest., 85, 1740–1745.

  • Gangarosa LM, Sizemore N, Graves-Deal R, Oldham SM, Der CJ and Coffey RJ . (1997). J. Biol. Chem., 272, 18926–18931.

  • Ghadersohi A and Sood AK . (2001). Clin. Cancer Res., 7, 2731–2738.

  • Gilles C, Polette M, Birembaut P, Brunner N and Thompson E . (1997). Clin. Exp. Metast., 15, 519–526.

  • Graves B and Petersen J . (1998). Advances in Cancer Research, Vol. 75. Klein G (ed.). Academic Press: San Diego, CA, USA, pp. 1–55.

    Google Scholar 

  • Hanahan D and Weinberg RA . (2000). Cell, 100, 57–70.

  • Hay ED . (1995). Acta Anat., 154, 8–20.

  • Horwitz AF, Sandborg RR and Huttenlocher A . (1995). Curr. Opin. Cell Biol., 7, 697–706.

  • Humphreys RC, Krajewska M, Krnacik S, Jaeger R, Weiher H, Krajewski S, Reed JC and Rosen JM . (1996). Development, 122, 4013–4022.

  • Kantor JD and Zetter BR . (1996). Mammary tumor cell cycle, differentiation and metastasis. Dickson R, Lippman M. (eds). Klewer Academic Publishers: New York, pp 303–323.

  • Kordon EC and Smith GH . (1998). Development, 125, 1921–1930.

  • Lauffenburger D and Horwitz A . (1996). Cell, 84, 359–369.

  • Leprince D, Gegonne A, Coll J, deTaisne D, Schneeberger A, Largrou C and Stehelin D . (1983). Nature, 306, 395–397.

  • Li ML, Aggeler J, Farson DA, Hatier C, Hassell J and Bissell MJ . (1987). Proc. Natl. Acad. Sci. USA, 84, 136–140.

  • Liu E, Thor A, He M, Barcos M, Ljung B and Benz C . (1992). Oncogene, 7, 1027–1032.

  • Mitas M, Mikhitarian K, Hoover L, Lockett MA, Kelley L, Hill A, Gillanders WE and Cole DJ . (2002). Br J Cancer, 86, 899–904.

  • Neznanov N, Man A, Yamamoto H, Hauser C, Cardiff R and Oshima R . (1999). Cancer Res., 59, 4242–4246.

  • Oda N, Abe M and Sato Y . (1999). J. Cell. Physiol., 178, 121–132.

  • O'Hagan R and JA H . (1998). Oncogene, 16, 301–310.

  • Oettgen P, Alani R, Barcinski M, Brown L, Akbarali Y, Boltax J, Kunsch C, Munger K and Libermann T . (1997). Mol. Cell. Biol., 17, 4419–4433.

  • Paine TM, Soule HD, Pauley RJ and Dawson PJ . (1992). Int. J. Cancer, 50 (3), 463–473.

  • Rodrigo I, Cato A and Cano A . (1999). Exp. Cell. Res., 248, 358–371.

  • Sapi E, Flick M, Rodov S and Kacinski B . (1998). Cancer Res., 58, 1027–1033.

  • Savagner P, Boyer B, Valles AM, Jouanneau J and Thiery JP . (1994). Cancer Treat. Res., 71, 229–249.

  • Schedin P, Mitrenga T and Kaeck M . (2000). J. Mammary Gland Biol. Neoplasia, 5, 211–225.

  • Shepherd T and Hassell J . (2000). J. Mammary Gland Biol. Neoplasia, 6, 129–140.

  • Shepherd TG, Kockeritz L, Szrajber MR, Muller WJ and Hassell JA . (2001). Curr. Biol., 11, 1739–1748.

  • Span PN, Manders P, Heuvel JJ, Thomas CM, Bosch RR, Beex LV and Sweep CG . (2002). Oncogene, 21, 8506–8509.

  • Stossel T, Hartwig J, Janmey P and Kwiatkowski D . (1999). Biochem. Soc. Symp., 45, 267–280.

  • Takaoka A, Yamada T, Gotoh M, Kanai Y, Imai K and Hirohashi S . (1998). J. Biol. Chem., 273, 33848–33855.

  • Traverse S, Seedorf K, Paterson H, Marshall CJ, Cohen P and Ullrich A . (1994). Curr. Biol., 4, 694–701.

  • Tymms M, Ng A, Thomas R, Schutte B, Zhou J, eyre H, Sutherland G, Seth A, Rosenberg M, Papas T, Debouck C and Kola I . (1997). Oncogene, 15, 2449–2462.

  • Wang B, Soule HD and Miller FR . (1997). Anticancer Res., 17, 4387–4394.

  • Wasylyk B, Hagman J and Gutierrez-Hartmann A . (1998). Trends Biochem. Sci., 23, 213–216.

  • Watabe T, Yoshida K, Shindoh M, Kaya M, Fujikawa K, Sato H, Seiki M, Ishii S and Fujinaga K . (1998). Int. J. Cancer, 77, 128–137.

  • Weaver VM, Fischer AH, Peterson OW and Bissell MJ . (1996). Biochem. Cell Biol., 74, 833–851.

Download references

Acknowledgements

We are grateful to Drs Heide Ford and Dean Edwards for critical review of this manuscript. We thank the members of the Schedin and Gutierrez-Hartmann laboratories for their helpful comments and suggestions. We also thank Ms Rachel Burhard and Kristen Rumer for providing IHC technical assistance. DNA sequencing was provided by the Core Facility of the University of Colorado Comprehensive Cancer Center (NIH P30 CA 46934). This work was supported by grants from the NIH NCI R01 CA85944 and Cancer League of Colorado to PS, and the DOD DAMD 17-00-1-0476 to AGH. We are particularly thankful to Dr A Peter Czernilofzky (Boehringer Ingleheim Austria GmbH) for providing support to AGH during the initial phases of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pepper J Schedin or Arthur Gutierrez-Hartmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schedin, P., Eckel-Mahan, K., McDaniel, S. et al. ESX induces transformation and functional epithelial to mesenchymal transition in MCF-12A mammary epithelial cells. Oncogene 23, 1766–1779 (2004). https://doi.org/10.1038/sj.onc.1207391

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207391

Keywords

This article is cited by

Search

Quick links