Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways

Abstract

Overexpression of hepatocyte growth factor (HGF), also called scatter factor (SF), and its receptor c-Met are associated with poor prognosis for cancer patients. In particular, breast cancer cells can produce HGF that acts in a paracrine as well as in an autocrine manner. Therefore, HGF and c-Met are putative targets for cancer therapy. To explore HGF/c-Met signaling in breast cancer, we have generated transgenic mice expressing HGF specifically in mammary epithelium under the transcriptional control of the whey acidic protein (WAP) gene promoter. WAP-HGF transgenic females developed hyperplastic ductal trees and multifocal invasive tumors after several pregnancies, some of which progressed to lung metastases. Tumors produced HGF and displayed phosphorylated c-Met, which correlated with increased Akt as well as c-myc activation. A high growth rate, as demonstrated by Ki67 nuclear antigen staining, and a lack of progesterone receptor were characteristic of the tumors. Immunohistochemical analysis revealed areas of osteopontin (Opn) expression in WAP-HGF tumors and lung metastases in agreement with a previously reported role for Opn in invasive growth. We suggest that these mice may serve as a new breast cancer model for the evaluation of the effects of unscheduled HGF expression in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aulmann S, Bentz M and Sinn HP . (2002). Breast Cancer Res. Treat., 74, 25–31.

  • Bieche I, Champeme MH and Lidereau R . (1999). Int. J. Cancer, 82, 908–910.

  • Birchmeier C and Gherardi E . (1998). Trends Cell. Biol., 8, 404–410.

  • Boon EM, van der Neut R, van de Wetering M, Clevers H and Pals ST . (2002). Cancer Res., 62, 5126–5128.

  • Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM and Laterra J . (2000). Cancer Res., 60, 4277–4283.

  • Camp RL, Rimm EB and Rimm DL . (1999). Cancer, 86, 2259–2265.

  • Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, Mills GB and Lee AV . (2003). Mol. Endocrinol., 17, 575–588.

  • Danilkovitch-Miagkova A, Miagkov A, Skeel A, Nakaigawa N, Zbar B and Leonard EJ . (2001). Mol. Cell. Biol., 21, 5857–5868.

  • Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, Nordlinger B, Bretti S, Bottardi S and Giordano S . (1995). Clin. Cancer Res., 1, 147–154.

  • Di Renzo MF, Olivero M, Martone T, Maffe A, Maggiora P, Stefani AD, Valente G, Giordano S, Cortesina G and Comoglio PM . (2000). Oncogene, 19, 1547–1555.

  • Edakuni G, Sasatomi E, Satoh T, Tokunaga O and Miyazaki K . (2001). Pathol. Int., 51, 172–178.

  • Elliott BE, Hung WL, Boag AH and Tuck AB . (2002). Can. J. Physiol. Pharmacol., 80, 91–102.

  • Furge KA, Zhang YW and Vande Woude GF . (2000). Oncogene, 19, 5582–5589.

  • Gallagher RC, Hay T, Meniel V, Naughton C, Anderson TJ, Shibara H, Ito M, Clevers H, Noda T, Sanson OJ, Mason JO and Clarke AR . (2002). Oncogene, 21, 6446–6457.

  • Ghoussoub RA, Dillon DA, D'Aquila T, Rimm EB, Fearon ER and Rimm DL . (1998). Cancer, 82, 1513–1520.

  • Greenberg R, Schwartz I, Skornick Y and Kaplan O . (2003). Breast Cancer Res., 5, R71–R76.

  • Hennighausen L and Robinson GW . (2001). Dev. Cell, 1, 467–475.

  • Hogan B . (1994). Manipulating the Mouse Embryo: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Plainview, NY.

    Google Scholar 

  • Jin L, Fuchs A, Schnitt SJ, Yao Y, Joseph A, Lamszus K, Park M, Goldberg ID and Rosen EM . (1997). Cancer, 79, 749–760.

  • Kamalati T, Niranjan B, Yant J and Buluwela L . (1999). J. Mammary Gland Biol. Neoplasia, 4, 69–77.

  • Kang JY, Dolled-Filhart M, Ocal IT, Singh B, Lin CY, Dickson RB, Rimm DL and Camp RL . (2003). Cancer Res., 63, 1101–1105.

  • Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L, Schmidt M, Mills GB, Mendelsohn J and Fan Z . (2003). Oncogene, 22, 3205–3212.

  • Kordon EC, Smith GH, Callahan R and Gallahan D . (1995). J. Virol., 69, 8066–8069.

  • Liang J, Zubovitz J, Perrocelli T, Kotchetkov R, Connor MK, Han K, Lee JH, Ciarallo S, Catzavelos C, Beniston R, Franssen E and Slingerland JM . (2002). Nat. Med., 8, 1153–1160.

  • Liu X, Robinson GW and Hennighausen L . (1996). Mol. Endocrinol., 10, 1496–1506.

  • Medico E, Gentile A, Lo Celso C, Williams TA, Gambarotta G, Trusolino L and Comoglio PM . (2001). Cancer Res., 61, 5861–5868.

  • Michaelson JS and Leder P . (2001). Oncogene, 20, 5093–5099.

  • Miyoshi K, Shillingford JM, Le Provost F, Gounari F, Bronson R, von Boehmer H, Taketo MM, Cardiff RD, Hennighausen L and Khazaie K . (2002). Proc. Natl. Acad. Sci. USA, 99, 219–224.

  • Monga SP, Mars WM, Pediaditakis P, Bell A, Mule K, Bowen WC, Wang X, Zarneger R and Michalopoulos GK . (2002). Cancer Res., 62, 2064–2071.

  • Nakopoulou L, Gakiopoulou H, Keramopoulos A, Giannopoulou I, Athanassiadou P, Mavrommatis J and Davaris PS . (2000). Histopathology, 36, 313–325.

  • Nemir M, Bhattacharyya D, Li X, Singh K, Mukherjee AB and Mukherjee BB . (2000). J. Biol. Chem., 275, 969–976.

  • Niemann C, Brinkmann V, Spitzer E, Hartmann G, Sachs M, Naundorf H and Birchmeier W . (1998). J. Cell Biol., 143, 533–545.

  • Niranjan B, Buluwela L, Yant J, Perusinghe N, Atherton A, Phippard D, Dale T, Gusterson B and Kamalati T . (1995). Development, 121, 2897–2908.

  • Oates AJ, Barraclough R and Rudland PS . (1996). Oncogene, 13, 97–104.

  • Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S and Comoglio PM . (2003). Cancer Cell, 3, 347–361.

  • Pittius CW, Hennighausen L, Lee E, Westphal H, Nicols E, Vitale J and Gordon K . (1988). Proc. Natl. Acad. Sci. USA, 85, 5874–5878.

  • Pollard JW . (2001). Breast Cancer Res., 3, 230–237.

  • Rahimi N, Tremblay E, McAdam L, Park M, Schwall R and Elliott B . (1996). Cell Growth Differ., 7, 263–270.

  • Rittling SR and Novick KE . (1997). Cell Growth Differ., 8, 1061–1069.

  • Robinson GW, McKnight RA, Smith GH and Hennighausen L . (1995). Development, 121, 2079–2090.

  • Rong S, Segal S, Anver M, Resau JH and Vande Woude GF . (1994). Proc. Natl. Acad. Sci. USA, 91, 4731–4735.

  • Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR, MacLeod CL, Shyamala G, Gillgrass AE and Cardiff RD . (2002). Am. J. Pathol., 161, 1087–1097.

  • Rudland PS, Platt-Higgins A, El-Tanani M, De Silva Rudland S, Barraclough R, Winstanley JH, Howitt R and West CR . (2002). Cancer Res., 62, 3417–3427.

  • Schlotter CM, Vogt U, Bosse U, Mersch B and Wassmann K . (2003). Breast Cancer Res., 5, R30–R36.

  • Sonnenberg E, Meyer D, Weidner KM and Birchmeier C . (1993). J. Cell Biol., 123, 223–235.

  • Soriano JV, Pepper MS, Nakamura T, Orci L and Montesano R . (1995). J. Cell Sci., 108, 413–430.

  • Stal O, Perez-Tenorio G, Akerberg L, Olsson B, Nordenskjold B, Skoog L and Rutqvist LE . (2003). Breast Cancer Res., 5, R37–R44.

  • Takeuchi H, Bilchik A, Saha S, Turner R, Wiese D, Tanaka M, Kuo C, Wang HJ and Hoon DS . (2003). Clin. Cancer Res., 9, 1480–1488.

  • Tolgay Ocal I, Dolled-Filhart M, D'Aquila TG, Camp RL and Rimm DL . (2003). Cancer, 97, 1841–1848.

  • Tuck AB and Chambers AF . (2001). J. Mammary Gland Biol. Neoplasia, 6, 419–429.

  • Tuck AB, Elliott BE, Hota C, Tremblay E and Chambers AF . (2000). J. Cell Biochem., 78, 465–475.

  • Tuck AB, Park M, Sterns EE, Boag A and Elliott BE . (1996). Am. J. Pathol., 148, 225–232.

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM and Wahl GM . (2002). Mol. Cell, 9, 1031–1044.

  • Walter KA, Hossain MA, Luddy C, Goel N, Reznik TE and Laterrra J . (2002). Mol. Cell. Biol., 22, 2703–2715.

  • Wang X, DeFrances MC, Dai Y, Pediaditakis P, Johnson C, Bell A, Michalopulos GK and Zarnegar R . (2002). Mol. Cell, 9, 411–421.

  • Woodroofe C, Muller W and Ruther U . (1992). DNA Cell Biol., 11, 587–592.

  • Xiao GH, Jeffers M, Bellacosa A, Mitsuuchi Y, Vande Woude GF and Testa JR . (2001). Proc. Natl. Acad. Sci. USA, 98, 247–252.

  • Yamashita J, Ogawa M, Yamashita S, Nomura K, Kuramoto M, Saishoji T and Shin S . (1994). Cancer Res., 54, 1630–1633.

  • Yang Y, Spitzer E, Meyer D, Sachs M, Niemann C, Hartmann G, Weidner KM, Birchmeier C and Birchmeier W . (1995). J. Cell Biol., 131, 215–226.

  • Yant J, Buluwela L, Niranjan B, Gusterson B and Kamalati T . (1998). Exp. Cell Res., 241, 476–481.

  • Yoshida S, Yamaguchi Y, Itami S, Yoshikawa K, Tabata Y, Matsumoto K and Nakamura T . (2003). J. Invest. Dermatol., 120, 335–343.

  • Zhang YW and Vande Woude GF . (2003). J. Cell Biochem., 88, 408–417.

Download references

Acknowledgements

We thank Dr Cardiff for histopathological characterization, Sandra Canelles for technical support, Dr La Rochelle for mouse HGF cDNA; MIG was a recipient of a fellowship from the Susan G Komen Breast Cancer Foundation grant number 9859.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta I Gallego.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallego, M., Bierie, B. & Hennighausen, L. Targeted expression of HGF/SF in mouse mammary epithelium leads to metastatic adenosquamous carcinomas through the activation of multiple signal transduction pathways. Oncogene 22, 8498–8508 (2003). https://doi.org/10.1038/sj.onc.1207063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207063

Keywords

This article is cited by

Search

Quick links