Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Human HMGA2 promoter is coregulated by a polymorphic dinucleotide (TC)-repeat

Abstract

HMGA proteins are thought to be causally involved in the progression of different diseases, including benign and malignant tumors, obesity, arteriosclerosis, and restenosis. As HMGA proteins are architectural transcription factors, their binding to DNA leads to changes in DNA-conformation modulating the environment for the assembly and function of transcriptional complexes, thus influencing the expression of a huge variety of genes. Despite the emerging role of HMGA proteins for important diseases, only limited information is available about mechanisms regulating the expression of the HMGA2 gene. In this report, 2240 bp of the 5′ flanking region of the HMGA2 gene were functionally analyzed by luciferase assay experiments. Besides the identification of novel positive and negative regulatory elements, it was shown that transcription is initiated from two independent promoter regions within cell lines HeLa, MCF7, and L14TSV 40. Furthermore, a functional polymorphic dinucleotide repeat (TCTCT(TC)n) 500 bp upstream of the ATG translational start codon was found to regulate strongly the human HMGA2 promoter with an activation pattern that correlates to its TC-repeat length.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Anand A and Chada K . (2000). Nat. Genet., 24, 377–380.

  • Ashar HR, Cherath L, Przybysz KM and Chada K . (1996). Genomics, 31, 207–214.

  • Ashar HR, Fejzo MS, Tkachenko A, Zhou X, Fletcher JA, Weremowicz S, Morton CC and Chada K . (1995). Cell, 82, 57–65.

  • Ayoubi TA, Jansen E, Meulemans SM and Van de Ven WJ (1999). Oncogene, 18, 5076–5087.

  • Battista S, Fidanza V, Fedele M, Klein-Szanto AJ, Outwater E, Brunner H, Santoro M, Croce CM and Fusco A . (1999). Cancer Res., 59, 4793–4797.

  • Borrmann L, Wilkening S and Bullerdiek J . (2001). Oncogene, 20, 4537–4541.

  • Bustin M and Reeves R . (1996). Prog. Nucleic Acid Res. Mol. Biol., 54, 35–100.

  • Chau KY, Arlotta P, Patel UA, Crane-Robinson C, Manfioletti G and Ono SJ . (1999). FEBS Lett., 457, 429–436.

  • Chau KY, Patel UA, Lee KL, Lam HY and Crane-Robinson C . (1995). Nucleic Acids Res., 23, 4262–4266.

  • Chiappetta G, Avantaggiato V, Visconti R, Fedele M, Battista S, Trapasso F, Merciai BM, Fidanza V, Giancotti V, Santoro M, Simeone A and Fusco A . (1996). Oncogene, 13, 2439–2446.

  • Chin MT, Pellacani A, Hsieh CM, Lin SS, Jain MK, Patel A and Huggins GS . (1999). J. Mol. Cell Cardiol., 31, 2199–2205.

  • Espinas ML, Jimenez-Garcia E, Martinez-Balbas A and Azorin F . (1996). J. Biol. Chem., 271, 31807–31812.

  • Firulli AB, Maibenco DC and Kinniburgh AJ . (1994). Arch. Biochem. Biophys., 310, 236–242.

  • Hirning-Folz U, Wilda M, Rippe V, Bullerdiek J and Hameister H . (1998). Genes Chromosomes Cancer, 23, 350–357.

  • Htun H and Dahlberg JE . (1988). Science, 241, 1791–1796.

  • Htun H and Dahlberg JE . (1989). Science, 243, 1571–1576.

  • Ishwad CS, Shriver MD, Lassige DM and Ferrell RE . (1997). Hum. Genet., 99, 103–105.

  • Kazmierczak B, Rosigkeit J, Wanschura S, Meyer-Bolte K, Van de Ven WJ, Kayser K, Krieghoff B, Kastendiek H, Bartnitzke S and Bullerdiek J . (1996). Oncogene, 12, 515–521.

  • Kim HG, Reddoch JF, Mayfield C, Ebbinghaus S, Vigneswaran N, Thomas S, Jones Jr DE and Miller DM . (1998). Biochemistry, 37, 2299–2304.

  • Lu Q, Wallrath LL, Granok H and Elgin SC . (1993). Mol. Cell. Biol., 13, 2802–2814.

  • Meilahn EN, Matthews KA, Egeland G, and Kelsey SF . (1989). Maturitas, 11, 319–329

  • Michel D, Chatelain G, Herault Y and Brun G . (1992). Nucleic Acids Res., 20, 439–443.

  • Patel UA, Bandiera A, Manfioletti G, Giancotti V, Chau KY and Crane-Robinson C . (1994). Biochem. Biophys. Res. Commun., 201, 63–70.

  • Rogalla P, Drechsler K, Frey G, Hennig Y, Helmke B, Bonk U and Bullerdiek J . (1996). Am. J. Pathol., 149, 775–779.

  • Rustighi A, Mantovani F, Fusco A, Giancotti V and Manfioletti G . (1999). Biochem. Biophys. Res. Commun., 265, 439–447.

  • Rustighi A, Tessari MA, Vascotto F, Sgarra R, Giancotti V and Manfioletti G . (2002). Biochemistry, 41, 1229–1240.

  • Scala S, Portella G, Fedele M, Chiappetta G and Fusco A . (2000). Proc. Natl. Acad. Sci. USA, 97, 4256–4261.

  • Schoenmakers EF, Wanschura S, Mols R, Bullerdiek J, Van den Berghe H and Van de Ven WJ . (1995). Nat. Genet., 10, 436–444.

  • Solomon MJ, Strauss F and Varshavsky A . (1986). Proc. Natl. Acad. Sci. USA, 83, 1276–1280.

  • Tamimi Y, van der Poel HG, Karthaus HF, Debruyne FM and Schalken JA . (1996). Br. J. Cancer, 74, 573–578.

  • Zhou X, Benson KF, Ashar HR and Chada K . (1995). Nature, 376, 771–774.

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (Bu 592/4-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Bullerdiek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borrmann, L., Seebeck, B., Rogalla, P. et al. Human HMGA2 promoter is coregulated by a polymorphic dinucleotide (TC)-repeat. Oncogene 22, 756–760 (2003). https://doi.org/10.1038/sj.onc.1206073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206073

Keywords

This article is cited by

Search

Quick links