Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy

Abstract

The tumour suppressor p53 is mutated in half of all human cancers, most frequently with missense substitutions in its core domain. We present a new assessment of the mutation database based on quantitative folding and DNA-binding studies of the isolated core domain. Our data identify five distinct mutant classes that correlate with four well-defined regions of the core domain structure. On extrapolation to 37°C the wild-type protein has a stability of 3.0 kcal/mol. This also emerges as an oncogenic threshold: all β-sandwich mutants destabilized by this amount (50% denatured) are expected to promote cancer. Other weakly destabilizing mutations are restricted to loop 3 in the DNA-binding region. Drugs that stabilize mutant p53 folding have the potential to reactivate apoptotic signalling pathways in tumour cells either by transactivation-dependent or independent pathways. Using an affinity ligand as a proof of principle we have recovered the thermodynamic stability of the hotspot G245S. With reference states for the five mutant classes as a guide, future therapeutic strategies may similarly stabilize partially structured or binding states of mutant p53 that restore limited p53 pathways to tumour suppression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 4
Figure 3

Similar content being viewed by others

References

  • Bargettoni J, Manfredi JJ, Chen XB, Marshak DR and Prives C . 1993 Genes Dev 7: 2565–2574

  • Bates S and Vousden KH . 1999 Cell Mol Life Sci 55: 28–37

  • Bennett WP, Hussain SP, Vahakangas KH, Khan MA, Shields PG and Harris CC . 1999 J Pathol 187: 8–18

  • Bullock AN, Henckel J, DeDecker BS, Johnson CM, Nikolova PV, Proctor, MR, Lane DP and Fersht AR . 1997 Proc Natl Acad Sci USA 94: 14338–14342

  • Bycroft M, Bateman A, Clarke J, Hamill SJ, Sandford R, Thomas RL and Chothia C . 1999 EMBO J 18: 297–305

  • Caelles C, Helmberg A and Karin M . 1994 Nature 370: 220–223

  • Chan TA, Hermeking H, Lengauer C, Kinzler KW and Vogelstein B . 1999 Nature 401: 616–620

  • Chène P . 1998 J Mol Biol 281: 281, 205–209

  • Chène P and Bechter E . 1999 J Mol Biol 286: 1269–1274

  • Cho Y, Gorina S, Jeffrey PD and Pavletich NP . 1994 Science 265: 346–355

  • Clarke J and Fersht AR . 1993 Biochemistry 32: 4322–4329

  • Dalby PA, Oliveberg M and Fersht AR . 1998 J Mol Biol 276: 625–646

  • Di Como CJ and Prives C . 1998 Oncogene 16: 2527–2539

  • Durocher D, Henckel J, Fersht AR and Jackson SP . 1999 Mol Cell 4: 387–394

  • Fahraeus R, Fischer P, Krausz E and Lane DP . 1999 J Pathol 187: 138–146

  • Fersht AR . 1998 Structure and Mechanism in Protein Science A Guide to Enzyme Catalysis and Protein Folding WH Freeman New York

    Google Scholar 

  • Fersht AR and Serrano L . 1993 Curr Opin Struct Biol 3: 75–83

  • Fourie AM, Hupp TR, Lane DP, Sang BC, Barbosa MS, Sambrook JF and Gething MJ . 1997 J Biol Chem 272: 19471–19479

  • Friedlander P, Legros Y, Soussi T and Prives C . 1996 J Biol Chem 271: 25468–25478

  • Gill SC and von Hippel PH . 1989 Anal Biochem 182: 319–326

  • Gorina S and Pavletich NP . 1996 Science 274: 1001–1005

  • Guillouf C, Rosselli F, Sjin RT, Moustacchi E, Hoffman B and Liebermann DA . 1998 Int J Oncol 13: 107–114

  • Hansen S, Hupp TR and Lane DP . 1996 J Biol Chem 271: 3917–3924

  • Harris CC . 1996 J Natl Cancer Inst 88: 1442–1455

  • Haupt Y, Maya R, Kazaz A and Oren M . 1997a Nature 387: 296–299

  • Haupt Y, Rowan S, Shaulian E, Kazaz A, Vousden K and Oren M . 1997b Leukemia 11: Suppl 3 337–339

  • Haupt Y, Rowan S, Shaulian E, Vousden K and Oren M . 1995 Genes Dev 9: 2170–2183

  • Hernandez-Boussard T, Rodriguez-Tome P, Montesano R and Hainaut P . 1999 Hum Mutat 14: 1–8

  • Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B and Levine AJ . 1990 Cell Growth Differ 1: 571–580

  • Hollstein MC, Sidransky D, Vogelstein B and Harris CC . 1991 Science 253: 49–53

  • Hubbard SJ, Campbell SF and Thornton JM . 1991 J Mol Biol 220: 507–530

  • Hubbard SJ and Thornton JM . 1993 ‘NACCESS’, Computer Program, Department of Biochemistry and Molecular Biology, University College London

  • Hupp TR . 1999 Cell Mol Life Sci 55: 88–95

  • Jayaraman L and Prives C . 1999 Cell Mol Life Sci 55: 76–87

  • Kastan MB, Onyekwere O, Sidransky D, Vogelstein B and Craig RW . 1991 Cancer Res 51: 6304–6311

  • Kirsch DG and Kastan MB . 1998 J Clin Oncol 16: 3158–3168

  • Koradi R, Billeter M and Wüthrich K . 1996 J Mol Graphics 14: 51–55

  • Levine AJ . 1997 Cell 88: 323–331

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE and Jacks T . 1994 Science 266: 807–810

  • Midgley CA and Lane DP . 1997 Oncogene 15: 1179–1189

  • Milner J . 1995 TIBS 20: 49–51

  • Miroux B and Walker JE . 1996 J Mol Biol 260: 289–298

  • Munoz V and Serrano L . 1996 Fold Des 1: R71–R77

  • Myers JK, Pace CN and Scholtz JM . 1995 Pro Sci 4: 2138–2148

  • Nikolova PV, Henckel J, Lane DP and Fersht AR . 1998 Proc Natl Acad Sci USA 95: 14675–14680

  • Ory K, Legros Y, Augguin C and Soussi T . 1994 EMBO J 13: 3496–3504

  • Pace CN . 1986 Methods Enzymol 131: 266–280

  • Pinhashi-Kimhi O, Michalovitz D, Ben-Zeev A and Oren M . 1986 Nature 320: 182–184

  • Polyak K, Xia Y, Zweier JL, Kinzler KW and Vogelstein B . 1997 Nature 389: 300–305

  • Ponchel F and Milner J . 1998 Br J Cancer 77: 1555–1561

  • Radford SE and Dobson CM . 1999 Cell 97: 291–298

  • Randell Brown C, Hong-Brown LQ and Welch WJ . 1997 J Clin Invest 99: 1432–1444

  • Raycroft L, Schmidt JR, Yoas K, Hao MM and Lozano G . 1991 Mol Cell Biol 11: 6067–6074

  • Rolley N, Butcher S and Milner J . 1995 Oncogene 11: 763–770

  • Ryan KM and Vousden KH . 1998 Mol Cell Biol 18: 3692–3698

  • Sauer RT and Lim WA . 1992 Curr Opin Struct Biol 2: 46–51

  • Selivanova G, Ryabchenko L, Jansson E, Iotsova V and Wiman KG . 1999 Mol Cell Biol 19: 3395–3402

  • Serrano L, Kellis Jr JT, Cann P, Matouschek A and Fersht AR . 1992 J Mol Biol 224: 783–804

  • Shaulian E, Zauberman A, Ginsberg D and Oren M . 1992 Mol Cell Biol 12: 5581–5592

  • Soussi T and May P . 1996 J Mol Biol 260: 623–637

  • Thomas PJ, Qu BH and Pedersen PL . 1995 Trends Biochem Sci 20: 456–459

  • Thukral SK, Blain GC, Chang KK and Fields S . 1994 Mol Cell Biol 14: 8315–8321

  • Wacey AI, Cooper DN, Liney D, Hovig E and Krawczak M . 1999 Hum Genet 104: 15–22

  • Walker DR, Bond JP, Tarone RE, Harris CC, Makalowski W, Boguski MS and Greenblatt MS . 1999 Oncogene 18: 211–218

  • Walker KK and Levine AJ . 1996 Proc Natl Acad Sci USA 93: 15335–15340

  • Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers JH and Harris CC . 1996 Genes Dev 10: 1219–1232

  • Wiman KG . 1998 Med Oncol 15: 222–228

  • Wong KB, DeDecker BS, Freund SM, Proctor MR, Bycroft M and Fersht AR . 1999 Proc Natl Acad Sci USA 96: 8438–8442

  • Yaffe MB and Cantley LC . 1999 Nature 402: 30–31

  • Zhang W, Guo XY, Hu GY, Liu WB, Shay JW and Deisseroth AB . 1994 EMBO J 13: 2535–2544

Download references

Acknowledgements

We thank Dr Mark Bycroft for his critical reading of the manuscript. We thank Drs Brian DeDecker, Chris Johnson and Kambo Wong for their helpful advice. This work was supported by the CRC of the UK. J Henckel holds a Marie Curie Research Training Grant of the European Commission.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bullock, A., Henckel, J. & Fersht, A. Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19, 1245–1256 (2000). https://doi.org/10.1038/sj.onc.1203434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1203434

Keywords

This article is cited by

Search

Quick links