Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival

Abstract

FOXP3 is a unique marker for CD4+CD25+ regulatory T cells (Tregs). In solid tumours, high numbers of Tregs are associated with a poor prognosis. Knowledge about the implications of Tregs for the behaviour of haematological malignancies is limited. In this study, skin biopsies from 86 patients with mycosis fungoides (MF) and cutaneous T-cell lymphoma (CTCL) unspecified were analysed for the expression of FOXP3 on tumour cells and tumour-infiltrating Tregs. Labelling of above 10% of the neoplastic cells was seen in one case classified as an aggressive epidermotropic CD8+ cytotoxic CTCL. In the remaining 85 cases, the atypical neoplastic infiltrate was either FOXP3 negative (n=80) or contained only very occasional weakly positive cells (n=5). By contrast, all biopsies showed varying numbers of strongly FOXP3+ tumour-infiltrating Tregs. MF with early or infiltrated plaques had significantly higher numbers of FOXP3+ Tregs than CTCL unspecified or advanced MF with tumours or transformation to large cell lymphoma. An analysis of all patients demonstrated that increasing numbers of FOXP3+ Tregs were associated with improved survival in both MF and CTCL unspecified. In conclusion, our data indicate that the presence of FOXP3+ Tregs in CTCL is associated with disease stage and patient survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Taams LS, Smith J, Rustin MH, Salmon M, Poulter LW, Akbar AN . Human anergic/suppressive CD4(+)CD25(+) T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001; 31: 1122–1131.

    Article  CAS  PubMed  Google Scholar 

  2. Zou W . Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295–307.

    Article  CAS  PubMed  Google Scholar 

  3. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27: 20–21.

    Article  CAS  PubMed  Google Scholar 

  4. Shevach EM . CD4+ CD25+ suppressor T cells: more questions than answers. Nat Rev Immunol 2002; 2: 389–400.

    Article  CAS  PubMed  Google Scholar 

  5. Shevach EM . Fatal attraction: tumors beckon regulatory T cells. Nat Med 2004; 10: 900–901.

    Article  CAS  PubMed  Google Scholar 

  6. Beyer M, Schultze JL . Regulatory T cells in cancer. Blood 2006; 108: 804–811.

    Article  CAS  PubMed  Google Scholar 

  7. Alvaro T, Lejeune M, Salvado MT, Bosch R, Garcia JF, Jaen J et al. Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin Cancer Res 2005; 11: 1467–1473.

    Article  PubMed  Google Scholar 

  8. Carreras J, Lopez-Guillermo A, Fox BC, Colomo L, Martinez A, Roncador G et al. High numbers of tumor infiltrating FOXP3-positive regulatory T-cells are associated with improved overall survival in follicular lymphoma. Blood 2006; 108: 2957–2964.

    Article  CAS  PubMed  Google Scholar 

  9. Berger CL, Tigelaar R, Cohen J, Mariwalla K, Trinh J, Wang N et al. Cutaneous T-cell lymphoma: malignant proliferation of T-regulatory cells. Blood 2005; 105: 1640–1647.

    Article  CAS  PubMed  Google Scholar 

  10. Klemke CD, Fritzsching B, Franz B, Kleinmann EV, Oberle N, Poenitz N et al. Paucity of FOXP3+ cells in skin and peripheral blood distinguishes Sezary syndrome from other cutaneous T-cell lymphomas. Leukemia 2006; 20: 1123–1129.

    Article  CAS  PubMed  Google Scholar 

  11. Tiemessen MM, Mitchell TJ, Hendry L, Whittaker SJ, Taams LS, John S . Lack of suppressive CD4+CD25+FOXP3+ T cells in advanced stages of primary cutaneous T-cell lymphoma. J Invest Dermatol 2006; 126: 2217–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Odum N, Hofmann B, Jakobsen B, Langhoff E, Morling N, Platz P et al. HLA-DP related suppression of mixed lymphocyte reaction with alloactivated lymphocytes. Tissue Antigens 1986; 27: 32–43.

    Article  CAS  PubMed  Google Scholar 

  13. Woetmann A, Lovato P, Eriksen KW, Krejsgaard T, Labuda T, Zhang Q et al. Non-malignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. Blood 2007; 109: 3325–3332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen PB, Thestrup-Pedersen K . Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides. In Vitro Cell Dev Biol 1992; 28A: 161–167.

    Article  CAS  PubMed  Google Scholar 

  15. Odum N, Bregenholt S, Eriksen KW, Skov S, Ryder LP, Bendtzen K et al. The CC-chemokine receptor 5 (CCR5) is a marker of, but not essential for the development of human Th1 cells. Tissue Antigens 1999; 54: 572–577.

    Article  CAS  PubMed  Google Scholar 

  16. Krejsgaard T, Vetter-Kauczok CS, Woetmann A, Lovato P, Labuda T, Eriksen KW et al. Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphomas. Leukemia 2006; 20: 1759–1766.

    Article  CAS  PubMed  Google Scholar 

  17. Gjerdrum LM, Sorensen BS, Kjeldsen E, Sorensen FB, Nexo E, Hamilton-Dutoit S . Real-time quantitative PCR of microdissected paraffin-embedded breast carcinoma—an alternative method for HER-2/neu analysis. J Mol Diagn 2004; 6: 42–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ralfkiaer E, Willemze R, Meijer CJ, Dummer R, Jaffe ES, Swerdlow SH et al. Primary cutaneous peripheral T-cell lymphoma, unspecified. In: Leboit PE, Burg G, Weedon D, Sarasin A (eds). Pathology and Genetics of Skin Tumors. IARC Press: Lyon, France, 2006, pp 184–188.

    Google Scholar 

  19. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G et al. Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001; 61: 4766–4772.

    CAS  PubMed  Google Scholar 

  20. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL et al. Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002; 168: 4272–4276.

    Article  CAS  PubMed  Google Scholar 

  21. Chen ML, Pittet MJ, Gorelik L, Flavell RA, Weissleder R, von BH et al. Regulatory T cells suppress tumor-specific CD8T cell cytotoxicity through TGF-beta signals in vivo. Proc Natl Acad Sci USA 2005; 102: 419–424.

    Article  CAS  PubMed  Google Scholar 

  22. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B . Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003; 9: 606–612.

    PubMed  Google Scholar 

  23. Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A . CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 2003; 98: 1089–1099.

    Article  PubMed  Google Scholar 

  24. Kono K, Kawaida H, Takahashi A, Sugai H, Mimura K, Miyagawa N et al. CD4(+)CD25 high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 2006; 55: 1064–1071.

    Article  CAS  PubMed  Google Scholar 

  25. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004; 10: 942–949.

    Article  CAS  PubMed  Google Scholar 

  26. Wolf D, Rumpold H, Koppelstatter C, Gastl GA, Steurer M, Mayer G et al. Telomere length of in vivo expanded CD4(+)CD25 (+) regulatory T-cells is preserved in cancer patients. Cancer Immunol Immunother 2006; 55: 1198–1208.

    Article  CAS  PubMed  Google Scholar 

  27. Hirahara K, Liu L, Clark RA, Yamanaka K, Fuhlbrigge RC, Kupper TS . The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J Immunol 2006; 177: 4488–4494.

    Article  CAS  PubMed  Google Scholar 

  28. Chong BF, Murphy JE, Kupper TS, Fuhlbrigge RC . E-selectin, thymus- and activation-regulated chemokine/CCL17, and intercellular adhesion molecule-1 are constitutively coexpressed in dermal microvessels: a foundation for a cutaneous immunosurveillance system. J Immunol 2004; 172: 1575–1581.

    Article  CAS  PubMed  Google Scholar 

  29. Kakinuma T, Sugaya M, Nakamura K, Kaneko F, Wakugawa M, Matsushima K et al. Thymus and activation-regulated chemokine (TARC/CCL17) in mycosis fungoides: serum TARC levels reflect the disease activity of mycosis fungoides. J Am Acad Dermatol 2003; 48: 23–30.

    Article  PubMed  Google Scholar 

  30. Murakami M, Sakamoto A, Bender J, Kappler J, Marrack P . CD25+CD4+ T cells contribute to the control of memory CD8+ T cells. Proc Natl Acad Sci USA 2002; 99: 8832–8837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Trzonkowski P, Szmit E, Mysliwska J, Dobyszuk A, Mysliwski A . CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin Immunol 2004; 112: 258–267.

    Article  CAS  PubMed  Google Scholar 

  32. Miyara M, Sakaguchi S . Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 2007; 13: 108–116.

    Article  CAS  PubMed  Google Scholar 

  33. Levings MK, Bacchetta R, Schulz U, Roncarolo MG . The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol 2002; 129: 263–276.

    Article  CAS  PubMed  Google Scholar 

  34. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM . Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin's lymphoma. Cancer Res 2006; 66: 10145–10152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen S, Ishii N, Ine S, Ikeda S, Fujimura T, Ndhlovu LC et al. Regulatory T cell-like activity of Foxp3+ adult T cell leukemia cells. Int Immunol 2006; 18: 269–277.

    Article  CAS  PubMed  Google Scholar 

  36. Karube K, Ohshima K, Tsuchiya T, Yamaguchi T, Kawano R, Suzumiya J et al. Expression of FoxP3, a key molecule in CD4CD25 regulatory T cells, in adult T-cell leukaemia/lymphoma cells. Br J Haematol 2004; 126: 81–84.

    Article  CAS  PubMed  Google Scholar 

  37. Matsubara Y, Hori T, Morita R, Sakaguchi S, Uchiyama T . Phenotypic and functional relationship between adult T-cell leukemia cells and regulatory T cells. Leukemia 2005; 19: 482–483.

    Article  CAS  PubMed  Google Scholar 

  38. Roncador G, Garcia JF, Garcia JF, Maestre L, Lucas E, Menarguez J et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 2005; 19: 2247–2253.

    Article  CAS  PubMed  Google Scholar 

  39. Walsh PT, Benoit BM, Wysocka M, Dalton NM, Turka LA, Rook AH . A role for regulatory T cells in cutaneous T-cell lymphoma; induction of a CD4 + CD25 + Foxp3+ T-cell phenotype associated with HTLV-1 infection. J Invest Dermatol 2006; 126: 690–692.

    Article  CAS  PubMed  Google Scholar 

  40. Hallermann C, Niermann C, Schulze HJ . Regulatory T-cell phenotype in association with large cell transformation of mycosis fungoides. Eur J Haematol 2007; 78: 260–263.

    Article  PubMed  Google Scholar 

  41. Jaffe ES, Ralfkiaer E . Mature T-cell and NK-cell neoplasms. In: Jaffe ES, Harris NL, Stein H, Vardiman JW (eds). Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France, 2001, pp 189–235.

    Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Novo Nordisk Foundation, the Foundation of 17—12-1981, the Research Council, the Danish Foundation for Cancer Research and the Danish Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L M Gjerdrum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gjerdrum, L., Woetmann, A., Odum, N. et al. FOXP3+ regulatory T cells in cutaneous T-cell lymphomas: association with disease stage and survival. Leukemia 21, 2512–2518 (2007). https://doi.org/10.1038/sj.leu.2404913

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404913

Keywords

This article is cited by

Search

Quick links