Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Signal Transduction and Cytokines

Clinical and prognostic significance of cytokine receptor expression in adult acute lymphoblastic leukemia: interleukin-2 receptor α-chain predicts a poor prognosis

Abstract

We quantitatively assessed the expression of cytokine receptors (interleukin-2 receptor (IL-2R), IL-3R, IL-4R, IL-5R, IL-6R, IL-7R, granulocyte-macrophage colony-stimulating factor R (GM-CSFR), G-CSFR, c-fms, c-mpl, c-kit and FLT3) in cells from 211 adults with acute lymphoblastic leukemia (ALL) by flow cytometry and determined their prevalence and clinical significance. Although all cytokine receptors were expressed to various degrees, the levels of IL-3R α-chain (IL-3Rα), IL-2Rα, IL-2Rβ, IL-7Rα, common-Rγ(γc), c-mpl, c-kit and FLT3 exhibited a wide spectrum 2000 sites/cell. Among them, IL-3Rα, IL-2Rα and FLT3 were highly expressed in B-lineage ALL, whereas IL-7Rα, γc and c-kit predominated in T-lineage ALL. Higher levels of IL-3Rα, IL-2Rα, c-kit and FLT3 correlated with the expression of CD13/33. Increased IL-2Rα levels related to the presence of Philadelphia chromosome (Ph), leukocytosis and shorter event-free survival (EFS). C-kit preferred in male. Elevated FLT3 levels correlated with age 60 years. Multivariate analysis in B-lineage ALL revealed only IL-2Rα (P=0.028) and Ph (P=0.020) as independent factors for EFS. These findings suggest that several cytokine receptors associated with certain cellular and clinical features, but IL-2Rα solely had a prognostic value and should be considered as a major prognostic factor for adult ALL that is comparable with Ph.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Oh H, Gale RP, Zhang MJ, Passweg JR, Ino T, Murakami H et al. Chemotherapy vs HLA-identical sibling bone marrow transcripts for adults with acute lymphoblastic leukemia in first remission. Bone Marrow Transplant 1998; 22: 253–257.

    Article  CAS  PubMed  Google Scholar 

  2. Ribera JM, Oriol A, Bethencourt C, Parody R, Hemendez-Rivas JM, Moreno MJ et al. Comparison of intensive chemotherapy, allogeneic or autologous stem cell transplantation as post remission treatments for adult patients with high-risk acute lymphoblastic leukemia. Results of the PETHEMA ALL-93 trial. Haematologica 2005; 90: 1346–1356.

    CAS  PubMed  Google Scholar 

  3. Thomas X, Boiron J-M, Huguet F, Dombret H, Bradstock K, Vey N et al. Outcome of treatment in adults with acute lymphoblastic leukemia: analysis of the LALA-94 trial. J Clin Oncol 2004; 20: 4075–4086.

    Article  Google Scholar 

  4. Lowengerg B, Touw IP . Hematopoietic growth factors and their receptors in acute leukemia. Blood 1993; 81: 281–292.

    Google Scholar 

  5. Lotem J, Sachs L . Cytokine control of developmental programs in normal hematopoiesis and leukemia. Oncogene 2002; 21: 3284–3294.

    Article  CAS  PubMed  Google Scholar 

  6. Koubek K, Stary J, Kumberova A, Kamova H, Filipec M . Occurrence of cytokine receptors on different lymphoid leukaemia cells. Eur J Haematol 1999; 63: 1–10.

    Article  CAS  PubMed  Google Scholar 

  7. Wu S, Gessner R, von Stockelberg A, Kirchner R, Henze G, Seeger K . Cytokine/cytokine receptor gene expression in childhood acute lymphoblastic leukemia. Cancer 2005; 103: 1054–1063.

    Article  CAS  PubMed  Google Scholar 

  8. Sato N, Caux C, Kitamura T, Watanabe Y, Arai K, Banchereau J et al. Expression and factor-dependent modulation of the interleukin-3 receptor subunit on human hemtopoietic cells. Blood 1993; 82: 752–761.

    CAS  PubMed  Google Scholar 

  9. Watanabe Y, Kitamura T, Hayashida K, Miyajima A . Monoclonal antibody against the common β subunit (βc) of the human interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor receptors shows upregulation of βc by IL-1 and tumor necrosis factor-α. Blood 1992; 80: 2215–2220.

    CAS  PubMed  Google Scholar 

  10. Uchiyama T, Broder S, Waldmann TA . A monoclonal antibody (anti-Tac) reactive with activated and functionally mature human T cells. I. Production of anti-Tac monoclonal antibody and distribution of Tac+ cells. J Immunol 1981; 126: 1393–1397.

    CAS  PubMed  Google Scholar 

  11. Tsudo M, Kitamura F, Migasaka M . Characterization of the interleukin-2 receptor βchain using three distinct monoclonal antibodies. Proc Natl Acad Sci USA 1989; 86: 1982–1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shikami M, Miwa H, Nishii K, Takahashi T, Shiku H, Tsutani H et al. Myeloid differentiation antigen and cytokine receptor expression on acute myelocytic leukaemia cells with t(16;21)(p11;q22): frequent expression of CD56 and interleukin-2 receptor α-chain. Br J Haematol 1999; 105: 711–719.

    Article  CAS  PubMed  Google Scholar 

  13. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human myeloid leukemia cell line (Kasumi-1) with 8;21 chromosomal translocation. Blood 1991; 77: 2031–2036.

    CAS  PubMed  Google Scholar 

  14. Kobayashi T, Tobinai K, Shimoyama M, Mikuni C, Konda S, Kozuru M et al. Long-term follow-up results of adult patients with acute lymphoblastic leukemia or lymphoblastic lymphoma treated with short-term, alternating non-cross-resistant chemotherapy: Japan Clinical Oncology Group Study 8702. Jpn J Clin Oncol 1999; 29: 340–348.

    Article  CAS  PubMed  Google Scholar 

  15. Tanimoto M, Miyawaki S, Ino T, Kyo T, Sakamaki H, Naoe T et al. Response-oriented individualized induction therapy followed by intensive consolidation and maintenance for adult patients with acute lymphoblastic leukemia: the ALL-87 study of the Japan Adult Leukemia Study Group (JALSG). Int J Hematol 1998; 68: 421–429.

    Article  CAS  PubMed  Google Scholar 

  16. Ueda T, Miyawaki S, Asou N, Kuraishi Y, Hiraoka A, Kuriyama K et al. Response-oriented individualized induction therapy with six drugs followed by four courses of intensive consolidation. 1 year maintenance and intensification therapy: the ALL90 study of the Japan Adult Leukemia Study Group. Int J Hematol 1998; 68: 279–289.

    Article  CAS  PubMed  Google Scholar 

  17. Takeuchi J, Kyo T, Naito K, Sao H, Takahashi M, Miyawaki S et al. Induction therapy by frequent administration of doxorubicin with four other drugs, followed by intensive consolidation and maintenance therapy for adult acute lymphoblastic leukemia: the JALSG-ALL93 study. Leukemia 2002; 16: 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  18. Jinnai I, Takeuchi J, Adachi K, Hiraoka A, Kyo T, Fukushima T et al. Strategy for treating adult ALL using new JALSG protocols. Symposium Proceedings of JALSG 10-year Anniversary International Symposium 1999, pp 39–41.

  19. Nakase K, Kita k, Otsuji A, Anazawa H, Hoshino K, Sekine T et al. Diagnostic and clinical importance of interleukin-2 receptor alpha-chain expression on non-T-cell acute leukaemia cells. Br J Haematol 1992; 80: 317–326.

    Article  CAS  PubMed  Google Scholar 

  20. de Totero D, Francia di Celle P, Cignetti A, Foa R . The IL-2 receptor complex: expression and function on normal and leukemic B cells. Leukemia 1995; 9: 1425–1431.

    CAS  PubMed  Google Scholar 

  21. Paietta E, Racevskis J, Neuberg D, Rowe JM, Goldstone AH, Wiernik PH . Expression of CD25 (interleukin-2 receptor α-chain) in adult acute lymphoblastic leukemia predicts for the presence of BCR/ABL fusion transcripts: results of a preliminary laboratory analysis of ECOG/MRC intergroup study E2993. Leukemia 1997; 11: 1887–1890.

    Article  CAS  PubMed  Google Scholar 

  22. Foa R, Caretto P, Fierro MT, Bonferroni M, Cardona S, Guarini A et al. Interleukin 2 does not promote the in vitro and in vivo proliferation and growth of human acute leukaemia cells of myeloid and lymphoid origin. Br J Haematol 1990; 75: 34–40.

    Article  CAS  PubMed  Google Scholar 

  23. Nakase K, Kita K, Kageyama S, Tsuji K, Miyanishi E, Miwa H et al. Clinical importance of interleukin-2 receptor α-chain expression in acute leukemia. Cancer Detect Prev 1997; 21: 273–279.

    CAS  PubMed  Google Scholar 

  24. Moon Y, Kim Y, Kim K, Lim J, Kang CS, Kim WI et al. Plasma soluble interleukin-2 receptor (sIL-2R) levels in patients with acute leukemia. Ann Clin Lab Sci 2004; 34: 410–415.

    CAS  PubMed  Google Scholar 

  25. Rubin LA, Jay G, Nelson DL . The released interleukin-2 receptor binds interleukin-2 efficiently. J Immunol 1986; 137: 3841–3844.

    CAS  PubMed  Google Scholar 

  26. Pui C-H, Ip SH, Iflah S, Behm FG, Grose BH, Dodge RK et al. Serum interleukin-2 receptor levels in childhood acute lymphoblastic leukemia. Blood 1988; 71: 1135–1137.

    CAS  PubMed  Google Scholar 

  27. Zoru U, Dallmann I, Grosse J, Kirchner H, Poliwoda H, Atzpodien J . Soluble interleukin 2 receptors abrogate IL-2 induced activation of peripheral mononuclear cells. Cytokine 1994; 6: 358–364.

    Article  Google Scholar 

  28. Paietta E, Nelson DL, Andersen J, Dutcher JP, Wiernik PH . Levels of soluble interleukin-2 receptors are predictive of response in patients with interleukin-2 and lymphokine-activated killer cells. Med Oncol 1995; 12: 121–124.

    Article  CAS  PubMed  Google Scholar 

  29. Testa U, Riccioni R, Militi S, Coccia E, Stellacci E, Samoggia P et al. Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 2002; 100: 2980–2988.

    Article  CAS  PubMed  Google Scholar 

  30. Tsuura Y, Suzuki T, Honma K, Sano M . Expression of c-kit ptotein in proliferative lesions of human breast: sexual difference and close association with phosphotyrosine status. J Cancer Res Clin Oncol 2002; 128: 239–246.

    Article  CAS  PubMed  Google Scholar 

  31. Nishii K, Kita K, Miwa H, Kawakami K, Nakase K, Masuya M et al. c-kit gene expression in CD7-positive acute lymphoblastc leukemia: close correlation with expression of myeloid-associated antigen CD13. Leukemia 1992; 6: 662–668.

    CAS  PubMed  Google Scholar 

  32. Carow CE, Levenstein M, Kaufmann SH, Chen J, Amin S, Rockwell P et al. Expression of the hematopoietic growth factor receptor FLT3 (STK-1/Flk2) in human leukemias. Blood 1996; 87: 1089–1096.

    CAS  PubMed  Google Scholar 

  33. Drexler HG . Expression of FLT3 receptor and response to FLT3 ligand by leukemic cells. Leukemia 1996; 10: 588–599.

    CAS  PubMed  Google Scholar 

  34. Kiyoi H, Naoe T, Nakano Y, Yokota S, Minami S, Miyawaki S et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood 1999; 93: 3074–3080.

    CAS  PubMed  Google Scholar 

  35. Frohling S, Schlenk RF, Breitruck J, Benner A, Kreitmeler S, Tobis K et al. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics: a study of the AML study group Ulm. Blood 2002; 100: 4372–4380.

    Article  CAS  PubMed  Google Scholar 

  36. Ozeki K, Kiyoi H, Hirose Y, Iwai M, Ninomiya M, Kodera Y et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004; 103: 1901–1908.

    Article  CAS  PubMed  Google Scholar 

  37. Yanada M, Takeuchi J, Sugiura I, Akiyama H, Usui N, Yagasaki F et al. High complete remission rate and promising outcome by combination of Imatinib and chemotherapy for newly diagnosed BCR-ABL-positive acute lymphoblastic leukemia: a phase I study by the Japan adult leukemia study group. J Clin Oncol 2006; 24: 460–466.

    Article  CAS  PubMed  Google Scholar 

  38. Waldmann TA, White JD, Carrasquillo JA, Raynolds JC, Paik CH, Gansow OA et al. Radioimmunotherapy of interleukin-2r α-expressing adult T-cell leukemia with Yttrium-90-labeled anti-Tac. Blood 1995; 86: 4063–4075.

    CAS  PubMed  Google Scholar 

  39. Koon HB, Severy P, Hagg DS, Butler K, Hill T, Jones AG et al. Antileukemic effect of daclizumab in CD25 high-expressing leukemias and impact of tumor burden on antibody dosing. Leuk Res 2006; 30: 190–203.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Drs T Uchiyama, M Tsudo, T Kitamura, R Ueda and E Tatsumi for supplying mAbs. We also thank Drs T Kobayashi, S Kageyama, H Anazawa and M Masuya (Mie University, Tsu, Japan), K Kawakami (Suzuka Chuo Hospital, Suzuka, Japan), K Oka (Suzuka Kaisei Hospital, Suzuka, Japan), T Sekine (Matsusaka Chuo Hospital, Matsusaka, Japan), A Otsuji (Matsusaka Municipal Hospital, Matsusaka, Japan), K Tsuji and S Tamaki (Yamada Red Cross Hospital, Ise, Japan), and N Kamada (Research Institute for Nuclear Medicine and Biology, Hiroshima, Japan) for important information. This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture, and Grants-in-Aid for Cancer Research from the Ministry of Health and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Nakase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakase, K., Kita, K., Miwa, H. et al. Clinical and prognostic significance of cytokine receptor expression in adult acute lymphoblastic leukemia: interleukin-2 receptor α-chain predicts a poor prognosis. Leukemia 21, 326–332 (2007). https://doi.org/10.1038/sj.leu.2404497

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404497

Keywords

This article is cited by

Search

Quick links