Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias

Abstract

Activating mutations in NOTCH1 are found in over 50% of human T-cell lymphoblastic leukemias (T-ALLs). Here, we report the analysis for activating NOTCH1 mutations in a large number of acute myeloid leukemia (AML) primary samples and cell lines. We found activating mutations in NOTCH1 in a single M0 primary AML sample, in three (ML1, ML2 and CTV-1) out of 23 AML cell lines and in the diagnostic (myeloid) and relapsed (T-lymphoid) clones in a patient with lineage switch leukemia. Importantly, the ML1 and ML2 AML cell lines are derived from an AML relapse in a patient initially diagnosed with T-ALL. Overall, these results demonstrate that activating mutations in NOTCH1 are mostly restricted to T-ALL and are rare in AMLs. The presence of NOTCH1 mutations in myeloid and T-lymphoid clones in lineage switch leukemias establishes the common clonal origin of the diagnostic and relapse blast populations and suggests a stem cell origin of NOTCH1 mutations during the molecular pathogenesis of these tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Weng AP, Ferrando AA, Lee W, Morris JPT, Silverman LB, Sanchez-Irizarry C et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 2004; 306: 269–271.

    Article  CAS  PubMed  Google Scholar 

  2. Das I, Craig C, Funahashi Y, Jung KM, Kim TW, Byers R et al. Notch oncoproteins depend on gamma-secretase/presenilin activity for processing and function. J Biol Chem 2004; 279: 30771–30780.

    Article  CAS  PubMed  Google Scholar 

  3. Wong GT, Manfra D, Poulet FM, Zhang Q, Josien H, Bara T et al. Chronic treatment with the gamma-secretase inhibitor LY-411575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004; 279: 12876–12882.

    Article  CAS  PubMed  Google Scholar 

  4. Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 1998; 8: 43–55.

    Article  CAS  PubMed  Google Scholar 

  5. Varnum-Finney B, Purton LE, Yu M, Brashem-Stein C, Flowers D, Staats S et al. The Notch ligand, Jagged-1, influences the development of primitive hematopoietic precursor cells. Blood 1998; 91: 4084–4091.

    CAS  PubMed  Google Scholar 

  6. Moore KA, Pytowski B, Witte L, Hicklin D, Lemischka IR . Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proc Natl Acad Sci USA 1997; 94: 4011–4016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Milner LA, Bigas A, Kopan R, Brashem-Stein C, Bernstein ID, Martin DI . Inhibition of granulocytic differentiation by mNotch1. Proc Natl Acad Sci USA 1996; 93: 13014–13019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones P, May G, Healy L, Brown J, Hoyne G, Delassus S et al. Stromal expression of Jagged 1 promotes colony formation by fetal hematopoietic progenitor cells. Blood 1998; 92: 1505–1511.

    CAS  PubMed  Google Scholar 

  9. Walker L, Lynch M, Silverman S, Fraser J, Boulter J, Weinmaster G et al. The Notch/Jagged pathway inhibits proliferation of human hematopoietic progenitors in vitro. Stem Cells 1999; 17: 162–171.

    Article  CAS  PubMed  Google Scholar 

  10. Han W, Ye Q, Moore MA . A soluble form of human delta-like-1 inhibits differentiation of hematopoietic progenitor cells. Blood 2000; 95: 1616–1625.

    CAS  PubMed  Google Scholar 

  11. Carlesso N, Aster JC, Sklar J, Scadden DT . Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 1999; 93: 838–848.

    CAS  PubMed  Google Scholar 

  12. Schroeder T, Kohlhof H, Rieber N, Just U . Notch signaling induces multilineage myeloid differentiation and up-regulates PU.1 expression. J Immunol 2003; 170: 5538–5548.

    Article  CAS  PubMed  Google Scholar 

  13. Drexler HG, Gaedicke G, Maeda S, Chen PM, Minowada J . Monocytoid leukemia cell line CTV-1: morphological, immunological and isoenzymatic characteristics. Tumour Biol 1986; 6: 503–517.

    CAS  PubMed  Google Scholar 

  14. Chen P, Chiu C, Chiou T, Maeda S, Chiang H, Tzeng C et al. Establishment and characterization of a human monocytoid leukemia cell line, CTV-1. Gann 1984; 75: 660–664.

    CAS  PubMed  Google Scholar 

  15. Herrmann R, Han T, Barcos MP, Lok MS, Henderson ES . Malignant lymphoma of pre-T-cell type terminating in acute myelocytic leukemia. A case report with enzymic and immunologic marker studies. Cancer 1980; 46: 1383–1388.

    Article  CAS  PubMed  Google Scholar 

  16. Ohyashiki K, Ohyashiki JH, Sandberg AA . Cytogenetic characterization of putative human myeloblastic leukemia cell lines (ML-1, -2, and -3): origin of the cells. Cancer Res 1986; 46: 3642–3647.

    CAS  PubMed  Google Scholar 

  17. Tanabe S, Zeleznik-Le NJ, Kobayashi H, Vignon C, Espinosa III R, LeBeau MM et al. Analysis of the t(6;11)(q27;q23) in leukemia shows a consistent breakpoint in AF6 in three patients and in the ML-2 cell line. Genes Chromosomes Cancer 1996; 15: 206–216.

    Article  CAS  PubMed  Google Scholar 

  18. Tanigaki K, Tsuji M, Yamamoto N, Han H, Tsukada J, Inoue H et al. Regulation of alphabeta/gammadelta T cell lineage commitment and peripheral T cell responses by Notch/RBP-J signaling. Immunity 2004; 20: 611–622.

    Article  CAS  PubMed  Google Scholar 

  19. Mantadakis E, Danilatou V, Stiakaki E, Paterakis G, Papadhimitriou S, Kalmanti M . T-cell acute lymphoblastic leukemia relapsing as acute myelogenous leukemia. Pediatr Blood Cancer (in press).

Download references

Acknowledgements

We thank Kelly Barnes for outstanding technical assistance. This work was supported by the WOLF Trust (AAF), Children's Leukemia Research Association (AAF), Pardee Cancer Research Foundation (AAF), a Pollin research Award (AAF) and NIH Grants CA109901 (ATL) and CA68484 (ATL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A A Ferrando.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palomero, T., McKenna, K., O-Neil, J. et al. Activating mutations in NOTCH1 in acute myeloid leukemia and lineage switch leukemias. Leukemia 20, 1963–1966 (2006). https://doi.org/10.1038/sj.leu.2404409

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404409

Keywords

This article is cited by

Search

Quick links